精英家教网 > 高中数学 > 题目详情
20.已知θ∈(-$\frac{π}{2}$,π),若函数f(x)=cos(x+$\frac{π}{6}$+θ)为奇函数,则函数y=sin(2x+θ)的图象在(0,$\frac{π}{3}$)上的对称轴是(  )
A.x=$\frac{π}{4}$B.x=$\frac{π}{8}$C.x=$\frac{π}{12}$D.x=$\frac{π}{6}$

分析 利用正弦函数、余弦函数的奇偶性,以及正弦函数、余弦函数的图象的对称性,求得函数y=sin(2x+θ)的图象在(0,$\frac{π}{3}$)上的对称轴.

解答 解:∵θ∈(-$\frac{π}{2}$,π),若函数f(x)=cos(x+$\frac{π}{6}$+θ)为奇函数,则 $\frac{π}{6}$+θ∈(-$\frac{π}{3}$,$\frac{7π}{6}$),∴$\frac{π}{6}$+θ=$\frac{π}{2}$,
∴θ=$\frac{π}{3}$,∴函数y=sin(2x+θ)=sin(2x+$\frac{π}{3}$),
令2x+$\frac{π}{3}$=$\frac{π}{2}$,可得x=$\frac{π}{12}$,故y=sin(2x+θ)的图象在(0,$\frac{π}{3}$)上的对称轴是x=$\frac{π}{12}$,
故选:C.

点评 本题主要考查正弦函数、余弦函数的奇偶性以及他们的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,两向量的夹角为60°,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.
(Ⅰ)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(Ⅱ)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
P(Х2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
附:Х2=$\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$
(注:此公式也可以写成K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若实数a>0,b>0,且$\frac{1}{a}$+$\frac{1}{b}$=1,则$\frac{1}{a-1}$+$\frac{1}{b-1}$的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设点B在以O(0,0)、A(1,0)为直径端点的上半圆上,则△AOB内切圆圆心的轨迹方程为(x-0.5)2+(y+0.5)2=0.5(y>0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,A、B、C、D、E、F是圆O的六个等分点,则转盘指针不落在阴影部分的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式$\sqrt{x+3}$>3-x的解集为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知AB为圆O的直径,C,D是圆O上的两个点,C是劣弧$\widehat{BD}$的中点,CE⊥AB于E,BD交AC于G,交CE于F.
(1)求证:CF=FG
(2)求证:DG•AC=AG•CE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}满足:a5=3,前3项和S3为$\frac{9}{2}$.
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{{{a_n}{a_{n+2}}}}$}的前n项和.

查看答案和解析>>

同步练习册答案