【题目】如图所示,正方形
与矩形
所在平面互相垂直,
,点
为
的中点.
![]()
(1)求证:
平面
;
(2)设在线段
上存在点
,使二面角
的大小为
,求此时
的长及点
到平面
的距离.
【答案】(1)证明见解析;(2)
.
【解析】
(1) 连结AD1,交A1D于点O,由EO为△ABD1的中位线,能证明BD1∥平面A1DE;
(2) 以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,利用空间向量坐标法即可得到结果.
(1)证明:连结AD1,交A1D于点O,
∵四边形ADD1A1为正方形,
∴O是AD1的中点,∵点E为AB的中点,连接OE.
∴EO为△ABD1的中位线,∴EO∥BD1,
又∵BD1不包含于平面A1DE,OE平面A1DE,
∴BD1∥平面A1DE.
![]()
(2)由题意可得:
,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则
,
B ( 1,2,0 ),E(1,1,0),
设![]()
设平面
的法向量为![]()
则
得
取
是平面
的一个法向量,而平面
的一个法向量为
要使二面角
的大小为
而
解得:
,故
=
,此时
![]()
故点E到平面
的距离为![]()
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形
是菱形,
是矩形,平面
平面
,
,
,
,
为
的中点.
![]()
(1)求证:
∥平面
;
(2)在线段
上是否存在点
,使二面角
的大小为
?若存在,求出
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(
元)试销l天,得到如表单价
(元)与销量
(册)数据:
单价 | 18 | 19 | 20 | 21 | 22 |
销量 | 61 | 56 | 50 | 48 | 45 |
(l)根据表中数据,请建立
关于
的回归直线方程:
(2)预计今后的销售中,销量
(册)与单价
(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?
附:
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.
![]()
求证:(1)DE∥平面ABB1A1;
(2)BC1⊥平面A1B1C.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:
年龄x | 28 | 32 | 38 | 42 | 48 | 52 | 58 | 62 |
收缩压 | 114 | 118 | 122 | 127 | 129 | 135 | 140 | 147 |
其中:
,
,![]()
![]()
请画出上表数据的散点图;
请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
;
的值精确到![]()
若规定,一个人的收缩压为标准值的
倍,则为血压正常人群;收缩压为标准值的
倍,则为轻度高血压人群;收缩压为标准值的
倍,则为中度高血压人群;收缩压为标准值的
倍及以上,则为高度高血压人群
一位收缩压为180mmHg的70岁的老人,属于哪类人群?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com