精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A,B,C所对的边分别为a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=4,且△ABC的面积的最大值为$\sqrt{3}$,则此时△ABC的形状为(  )
A.锐角三角形B.直线三角形C.等腰三角形D.正三角形

分析 由 $\sqrt{3}$(acosB+bcosA)=2csinC及正弦定理可得 $\sqrt{3}$(sinAcosB+sinBcosA)=2sin2C,结合sinC>0,化简可得sinC=$\frac{\sqrt{3}}{2}$,由a+b=4,利用基本不等式可得ab≤4,(当且仅当a=b=2成立),由△ABC的面积的最大值S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,即可解得a=b=2,从而得解△ABC的形状为等腰三角形.

解答 解:∵$\sqrt{3}$(acosB+bcosA)=2csinC,
∴$\sqrt{3}$(sinAcosB+sinBcosA)=2sin2C,
∴$\sqrt{3}$sinC=2sin2C,且sinC>0,
∴sinC=$\frac{\sqrt{3}}{2}$,
∵a+b=4,可得:4≥2 $\sqrt{ab}$,解得:ab≤4,(当且仅当a=b=2成立)
∵△ABC的面积的最大值S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴a=b=2,
∴则此时△ABC的形状为等腰三角形.
故选:C.

点评 本题主要考查了正弦定理,三角形面积公式,基本不等式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河北正定中学高二上月考一数学(文)试卷(解析版) 题型:选择题

执行右边的程序框图,则输出的等于( )

A.4 B.5 C.6 D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知棱长为1的正方体ABCD-A1B1C1D1中,P,Q是面对角线A1C1的两个不同的动点.
①存在M,N两点,使BP⊥DQ;
②体对角线BD1垂直平面DPQ;
③若|PQ|=1,S△BPD∈[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$];
④若|PQ|=1,则四面体BDPQ在平面ABCD上的正投影面积为定值;
⑤若|PQ|=1,则四面体BDPQ的体积随着线段PQ移动而变化;
以上命题为真命题的有①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.我们通常把圆、椭圆、抛物线、双曲线统称为圆锥曲线.通过普通高中课程实验教科书《数学》2-1第二章《圆锥曲线与方程》章头引言我们知道,用一个垂直于圆锥的轴的平面截圆锥,截口曲线(截面与圆锥侧面的交线)是一个圆.实际上,设圆锥母线与轴所成角为α,不过圆锥顶点的截面与轴所成角为θ.当θ=$\frac{π}{2}$,截口曲线为圆,当$α<θ<\frac{π}{2}$时,截口曲线为椭圆;当0≤θ<α时,截口曲线为双曲线; 当θ=α时,截口曲线为抛物线;如图2,正方体ABCD-A′B′C′D′中,M为BC边的中点,点P在底面A′B′C′D′上运动并且使∠MAC′=∠PAC′,那么点P的轨迹是(  )
A.一段双曲线弧B.一段椭圆弧C.一段圆弧D.一段抛物线弧

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.甲、乙等5名选手被随即分配到A、B、C、D四个不同的项目中,每个项目至少有一人,则甲乙两人同时参加A项目的概率为$\frac{1}{40}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.袋中装有大小相同,颜色不同的10张卡片,其中红色卡片5张,白色卡片3张,蓝色卡片2张,现从中随机抽取一张卡片,确定颜色后再放回袋中,若取出的是白色卡片,则不再抽取,否则,继续抽取卡片,但最多抽取3次.
(Ⅰ)记“恰好取到2次红色卡片”为事件A,求P(A);
(Ⅱ)将抽取卡片的次数记为ξ,求随机变量ξ的概率分布列及数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线$l:ρsin(θ-\frac{π}{4})=4$和圆$C:ρ=2k•cos(θ+\frac{π}{4})(k≠0)$,直线上的点到圆C上的点的最小距离等于2
(1)求直线L的直角坐标方程;
(2)求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在极坐标系中,已知两点A(3,$\frac{5π}{3}$),B(1,$\frac{2π}{3}$),则A,B 两点间的距离等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,已知点G是△ABC的重心,过点G作直线与AB,AC两边分别交于M,N两点,且$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,则x+y的最小值为(  )
A.2B.$\frac{1}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案