精英家教网 > 高中数学 > 题目详情
15.函数f(x)的定义域为(a,b),其导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在区间(a,b)内极小值点的个数是(  )
A.4B.3C.2D.1

分析 根据当f'(x)>0时函数f(x)单调递增,f'(x)<0时f(x)单调递减,可从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,然后得到答案

解答 解:从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,
根据极值点的定义可知在(a,b)内只有一个极小值点.
故选:D.

点评 本题主要考查函数的极值点和导数正负的关系.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知等差数列{an},其前n项和为Sn,满足$\overrightarrow{OA}={a_3}•\overrightarrow{OB}+{a_{2013}}•\overrightarrow{OC}$,若点A、B、C三点共线,则S2015=$\frac{2015}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求以下不等式的解集:
(1)2x2-x-15<0
(2)$\frac{2}{x}$>-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.从5双不同号的鞋子中任取4只,求
(1)恰有2只同号的概率;
(2)至少有2只同号的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=ex,g(x)=ln$\frac{x}{2}$+$\frac{1}{2}$的图象分别与直线y=m交于A,B两点,则|AB|的最小值为2+ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.用数学归纳法证明结论:(n+1)(n+2)…(n+n)=2n×1×3×5×…×(2n-1)(n∈N*)时,从“k到k+1”左边需增乘的代数式为2(2k+1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若X~N(5,1),则P(6<X<7)=(  )
(参考值:P(μ-σ<X≤μ+σ)=0.6826;P(μ-2σ<X≤μ+2σ)=0.9544;P(μ-3σ<X≤μ+3σ)=0.9974)
A.0.4772B.0.1574C.0.2718D.0.1359

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设$\frac{ai}{1-i}$=-1+i,其中i是虚数单位,那么实数a=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平面直角坐标系xOy中,以Ox轴为始边作角α和β,$α∈({0,\frac{π}{2}}),β∈({\frac{π}{2},π})$,其终边分别交单位圆于A,B两点.若A,B两点的横坐标分别是$\frac{3}{5}$,-$\frac{{\sqrt{2}}}{10}$. 试求
(1)tanα,tanβ的值;
(2)∠AOB的值.

查看答案和解析>>

同步练习册答案