分析 根据三点共线的向量等价条件求出a3+a2013的值,再由等差数列的性质和前n项和公式求出S2015的值.
解答 解:∵$\overrightarrow{OA}={a_3}•\overrightarrow{OB}+{a_{2013}}•\overrightarrow{OC}$,且点A、B、C三点共线,
∴a3+a2013=1,则a1+a2015=a3+a2013=1,
∴S2015=$\frac{2015({a}_{1}+{a}_{2015})}{2}$=$\frac{2015}{2}$,
故答案为:$\frac{2015}{2}$.
点评 本题考查由等差数列的性质、前n项和公式的灵活应用,以及三点共线的向量等价条件,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -$\frac{2\sqrt{3}}{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | ±$\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com