精英家教网 > 高中数学 > 题目详情
19.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为15(用数字作答)

分析 8人分成三组有可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2)共5类,根据分类计数原理即可求出

解答 解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),
∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,
根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种
故答案为:15.

点评 本题考查了分类计数原理得应用,关键是分类,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若曲线C1:y=$\frac{a}{2}$x2(a>0)与曲线C2:y=ex存在公共切线,则实数a的取值范围是[$\frac{{e}^{2}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,A、B、C为一个平行四边形的三个顶点,且A、B、C三点的坐标分别为(3,3)、(6,4)、(4,6).
(1)请直接写出这个平行四边形的第四个顶点的坐标;
(2)求这个平行四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,梯形ABCD中,CE⊥AD于E,BF⊥AD于F,且AF=BF=BC=1,$DE=\sqrt{2}$,现将△ABF,△CDE分别沿BF与CE翻折,使点A与点D重合,点O为AC的中点,设面ABF与面CDE相交于直线l,
(Ⅰ)求证:l∥CE;
(Ⅱ)求证:OF⊥面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,点D满足$\overrightarrow{BD}=\frac{3}{4}\overrightarrow{BC}$,点E是线段AD上的一个动点,若$\overrightarrow{AE}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,则t=(λ-1)22的最小值是(  )
A.$\frac{{3\sqrt{10}}}{10}$B.$\frac{{\sqrt{82}}}{4}$C.$\frac{9}{10}$D.$\frac{41}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,输出的s的值为(  )
A.$\frac{9}{5}$B.$\frac{7}{4}$C.$\frac{11}{6}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=xlnx.(题中e=2.71828为自然对数的底数)
(1)若方程f(x)-a=0在区间$[\frac{1}{e^2},+∞)$上有2个不同的实根,求实数a的取值范围;
(2)点P(x0,y0)(x0>$\frac{1}{e}$)是函数f(x)的图象上一动点,求函数f(x)的图象上点P处的切线与两坐标轴围成三角形面积的最小值;
(3)设g(x)=f(x)-$\frac{1}{e}{x^2}$,证明:g(x)极小值>$\frac{1-e}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在极坐标系中,曲线ρ2-6ρcosθ-2ρsinθ+6=0与极轴交于A,B两点,则A,B两点间的距离等于(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$2\sqrt{15}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=cos2x+$\sqrt{3}$sinxcosx,x∈R.
(1)求f(x)的最小正周期和单调递减区间;
(2)设x=m(m∈R)是函数y=f(x)图象的对称轴,求sin4m的值.

查看答案和解析>>

同步练习册答案