精英家教网 > 高中数学 > 题目详情
17.设正数x,y满足$\sqrt{x}$+$\sqrt{y}$≤a•$\sqrt{x+y}$恒成立,则a的最小值是$\sqrt{2}$.

分析 先用分离参数法将问题等价为:a≥[$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$]max,再用基本不等式$a+b≤\sqrt{2(a^2+b^2)}$,求该式的最大值.

解答 解:因为x,y都为正数,且$\sqrt{x}$+$\sqrt{y}$≤a•$\sqrt{x+y}$恒成立,
分离参数a得,a≥$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$,
所以,a≥[$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$]max
根据基本不等式:$a+b≤\sqrt{2(a^2+b^2)}$得,
$\sqrt{x}$+$\sqrt{y}$≤$\sqrt{2(x+y)}$=$\sqrt{2}$•$\sqrt{x+y}$,
所以,$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$≤$\sqrt{2}$,
所以,[$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$]max=$\sqrt{2}$,因此,a≥$\sqrt{2}$,
故答案为:$\sqrt{2}$.

点评 本题主要考查了基本不等式在求最值问题中的应用,运用分离参数法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知P为直线y=kx+b上一动点,若点P与原点均在直线x-y+2=0的同侧,则k,b满足的条件分别为(  )
A.k=1,b<2B.k=1,b>2C.k≠1,b<2D.k≠1,b>2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.a,b,c,d成等比数列,a+b,b+c,c+d均不为零,求证:a+b,b+c,c+d成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{AB}$=(-4,-3,-1),把$\overrightarrow{AB}$按向量(2,1,1)平移后所得向量是(-4,-3,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知奇函数f(x)定义在(-1,1)上,且在定义域上单调递减,若f(1-a)+f(2a)<0,则实数a的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求满足下列条件的双曲线方程:
(1)以2x±3y=0为渐近线,且经过点(1,2);
(2)离心率为$\frac{5}{4}$,虚半轴长为2;
(3)与椭圆x2+5y2=5共焦点且一条渐近线方程为y-$\sqrt{3}$x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知过点A(4,a)、B(5,b)的直线与直线l:x-y+m=0平行,求证直线ax+by+1=0过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设{an}的公比q的等比数列.
(1)推导{an}的前n项和公式;
(2)设q≠1,证明数列{an+1}不是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知直线l:kx-y+1-k=0与圆O:x2+y2=8交于P,Q两点,若圆O上有一个点E,使得OPEQ是平行四边形,则弦PQ的长为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.2$\sqrt{6}$D.2$\sqrt{10}$

查看答案和解析>>

同步练习册答案