精英家教网 > 高中数学 > 题目详情
5.已知向量$\overrightarrow{AB}$=(-4,-3,-1),把$\overrightarrow{AB}$按向量(2,1,1)平移后所得向量是(-4,-3,-1).

分析 由于向量无论怎样平移都不变,即可得出.

解答 解:由于向量无论怎样平移都不变,因此把$\overrightarrow{AB}$按向量(2,1,1)平移后所得向量仍然是$\overrightarrow{AB}$.
故答案为:(-4,-3,-1).

点评 本题考查了向量平移的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设数列{an}的前n项和为Sn,Sn=$\frac{{a}_{1}({3}^{n}-1)}{2}$(对n≥1恒成立)且a4=54,则an=$\frac{2}{3}•{3}^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设计求函数y=ax2+bx+c(a>0)的最小值的算法,并画出这个算法的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既是偶函数又在区间(0,$\frac{π}{2}$)上单调递增的函数是(  )
A.y=-sinxB.y=-cosxC.y=sin2xD.y=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$+$\overrightarrow{b}$=(3,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=($\frac{1}{3}$)x+1.
(1)求f(x)在R上的解析式;
(2)画出f(x)的图象;
(3)根据图象指出函数f(x)的值域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设正数x,y满足$\sqrt{x}$+$\sqrt{y}$≤a•$\sqrt{x+y}$恒成立,则a的最小值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sin(π-x)cosx.
(1)将f(x)化为Asin(ωx+Φ)的形式(A>0,ω>0);
(2)求f(x)的最小正周期;
(3)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函政f(x)=1g(9-3x)的定义域为A,g(x)=($\frac{1}{2}$)x(-1≤x≤0)的值域为B.
(1)求集合A∩B;
(2)设集合C={x|(x-a)(x-a-2)≤0,a∈R}.若B∩C=B,求a的取值范围.

查看答案和解析>>

同步练习册答案