| A. | 4 | B. | 6 | C. | 8 | D. | 16 |
分析 由题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出a12+a22=2c2,由此能求出9e12+e22的最小值.
解答 解:由题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,
令P在双曲线的右支上,
由双曲线的定义|PF1|-|PF2|=2a2,①
由椭圆定义|PF1|+|PF2|=2a1,②
又∵PF1⊥PF2,
∴|PF1|2+|PF2|2=4c2,③
①2+②2,得|PF1|2+|PF2|2=2a12+2a22,④
将④代入③,得a12+a22=2c2,
∴9e12+e22=$\frac{9{c}^{2}}{{{a}_{1}}^{2}}$+$\frac{{c}^{2}}{{{a}_{2}}^{2}}$=5+$\frac{9{{a}_{2}}^{2}}{{{2a}_{1}}^{2}}$+$\frac{{{a}_{1}}^{2}}{2{{a}_{2}}^{2}}$≥8,即$9e_1^2+e_2^2$的最小值是8.
故选:C.
点评 本题考查9e12+e22的最小值的求法,是中档题,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-8] | B. | [2,+∞) | C. | (-∞,-8]∪[2,+∞) | D. | (-∞,-8)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com