精英家教网 > 高中数学 > 题目详情
已知集合A={1,4,a2-2a},B={a-2,a2-4a+2,a2-3a+3,a2-5a},A∩B={1,3},则A∪B=
 
考点:交集及其运算,并集及其运算
专题:集合
分析:由A∩B={1,3}得到a2-2a=3,解得:a=-1或a=3.然后分a=-1或a=3讨论,求出B,则A∪B可求.
解答: 解:∵A={1,4,a2-2a},B={a-2,a2-4a+2,a2-3a+3,a2-5a},且A∩B={1,3},
∴a2-2a=3,解得:a=-1或a=3.
当a=-1时,a-2=-3,a2-4a+2=7,a2-3a+3=7,a2-5a=6.
集合B违背集合中元素的互异性;
当a=3时,a-2=1,a2-4a+2=-1,a2-3a+3=3,a2-5a=-6.
B={1,-1,3,-6}.
A∪B={1,-1,3,4,-6}.
故答案为:{1,-1,3,4,-6}.
点评:本题考查了交集、并集的运算,考查了集合中元素的特性,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设有两个命题:
(1)关于x的不等式x2+2ax+4>0对一切x∈R恒成立;
(2)函数f(x)=(5-2a)x是增函数,若命题有且只有一个是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx-
π
6
)-2cos2
ω
2
x+1(ω>0)的最小正周期为8.
(1)求ω的值;
(2)若函数y=g(x)与y=f(x)的图象关于直线x=1对称,求当x∈[0,
4
3
]时y=g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上的动点R(x,y)及两定点A(-2,0),B(2,0),直线RA、RB斜率分别为k1、k2,且k1•k2=-
3
4
,设动点R的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)四边形MNPQ的四个顶点均在曲线C上,且MQ∥NP,MQ⊥x轴,若直线MN和直线QP交于点S(4,0),问:四边形MNPQ两条对角线的交点是否为定点?若是,求出定点坐标;若不是,请说明理由.交曲线C于点Q.求证:直线NQ过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2,M为AA1的中点.
(1)求证直线C1M⊥平面BCM;
(2)求二面角C1-MC-B1的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x-1
+
1
2-x
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x轴上一点p到直线3x+4y-5=0的距离为4,则点p的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-
1
ax
(a>1),当θ∈[0,
π
2
]变化时,f(msinθ)+f(1-m)≥0恒成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinx+
2
sinx
的值域为
 

查看答案和解析>>

同步练习册答案