精英家教网 > 高中数学 > 题目详情
设有两个命题:
(1)关于x的不等式x2+2ax+4>0对一切x∈R恒成立;
(2)函数f(x)=(5-2a)x是增函数,若命题有且只有一个是真命题,求实数a的取值范围.
考点:函数单调性的性质,命题的真假判断与应用,函数恒成立问题
专题:函数的性质及应用
分析:当(1)、(2)是真命题时,分别求得a的范围,可得这2个命题中只有一个是真命题时,实数a的取值范围.
解答: 解:若命题(1)为真,要求△=(2a)2-16<0⇒-2<a<2.
命题(2)为真,要求5-2a>1⇒a<2.
若(1)真(2)假,则
-2<a<2
a≥2
⇒a∈ϕ

若(2)真(1)假,则
a≤-2或a≥2
a<2
⇒a≤-2

综上可得,a≤-2.
点评:本题主要考查命题的真假的判断和应用,二次函数的性质,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在长方体ABCD-A1B1C1D1中,已知底面是边长为2的正方形,高为1,点E在B1B上,且满足B1E=2EB.
(1)求证:D1E⊥A1C1
(2)在棱B1C1上确定一点F,使A、E、F、D1四点共面,并求此时B1F的长;
(3)求几何体ABED1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个奖杯的三视图,试根据奖杯的三视图计算它的表面积和体积.(尺寸如图,单位:cm)

查看答案和解析>>

科目:高中数学 来源: 题型:

为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组及频率如下表:
分组频数频率
[10、75,10、85)3
[10、85,10、95)9
[10、95,11、05)13
[11、05,11、15)16
[11、15,11、25)26
[11、25,11、35)20
[11、35,11、45)7
[11、45,11、55)4
[11、55,11、65)2
合计100
完成上面的频率分布表;
根据上表画出频率分布直方图;
根据上表和图,估计数据落在[10、95,11、35)范围内的概率约是多少?
数据小于11、20的概率约是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足
x-y+5≥0
x+y≥0
x≥3

(1)z=x2+y2的最大值和最小值
(2)z=
y
x-5
的最大值和最小值
(3)z=|2x-y+4|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-2)2,设a1=3,an+1=an-
f(an)
2an-4

(1)证明:数列{an-2}是等比数列,并求出数列{an}的通项公式;
(2)令bn=nan,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过两点A(-1,m),B(m,1),问:当m取何值时,直线l与y轴平行?

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆E1
x2
a12
+
y2
b12
=1和椭圆E2
x2
a22
+
y2
b22
满足
a2
a1
=
b2
b1
=m(m>0),则称这两个椭圆相似,m称其为相似比.
(Ⅰ)求经过点(
2
2
3
2
),且与椭圆C1:x2+2y2=1相似的椭圆C2的方程;
(Ⅱ)设过原点的一条射线l分别与(Ⅰ)中的椭圆C1,C2交于A、B两点,求|OA|•|OB|的取值范围;
(Ⅲ)设直线l1:y=kx与(Ⅰ)中椭圆C2交于M、N两点(其中M在第一象限),且直线l1与直线l2:x=t(t>0)交于点D,过D作DG∥MF(F为椭圆C2的右焦点)且交x轴于点G,若直线MG与椭圆C2有且只有一个公共点,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,4,a2-2a},B={a-2,a2-4a+2,a2-3a+3,a2-5a},A∩B={1,3},则A∪B=
 

查看答案和解析>>

同步练习册答案