精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x-2)2,设a1=3,an+1=an-
f(an)
2an-4

(1)证明:数列{an-2}是等比数列,并求出数列{an}的通项公式;
(2)令bn=nan,求数列{bn}的前n项和Sn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)根据等比数列的定义即可证明数列{an-2}是等比数列,结合等比数列的通项公式即可求数列{an}的通项公式;
(2)求出bn=nan的通项公式,利用错位相减法即可求数列{bn}的前n项和Sn
解答: (1)证明:∵an+1=an-
f(an)
2an-4
,f(x)=(x-2)2
∴an+1=an-
f(an)
2an-4
=an-
(an-2)2
2(an-2)
=
1
2
an+1

即an+1-2
1
2
an+1-2=
1
2
(an-2)

即数列{an-2}是等比数列,首项为a1-2=3-2=1,公比q=
1
2
的等比数列,
则an-2=(
1
2
)n-1
,即an=(
1
2
)n-1
+2,
(2)bn=nan=
n
2n-1
+2n

数列{bn}的前n项和Sn=(
1
20
+
2
21
+
3
22
+…+
n
2n-1
)
+2(1+2+3+…+n)=(
1
20
+
2
21
+
3
22
+…+
n
2n-1
)
+n2+n,
令Tn=(
1
20
+
2
21
+
3
22
+…+
n
2n-1
)

1
2
Tn=
1
2
+
2
22
+…+
n
2n

两式相减得
1
2
Tn=1+
1
2
+
1
22
+…+
1
2n-1
-
n
2n
=
1-
1
2n
1-
1
2
-
n
2n
=2(1-
1
2n
)-
n
2n

即Tn=4(1-
1
2n
-
n
2n
=4-
n+2
2n-1

故Sn=Tn+n2+n=4-
n+2
2n-1
+n2+n.
点评:本题主要考查等比数列的判断以及数列求和,利用错位相减法是解决本题的关键.综合性较强,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga(3+x)-loga(3-x)(a>1).
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并证明;
(3)当x∈[
1
3
1
2
]时,f(x)最大值为1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sinx-cosx)cosx+1,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在闭区间[
π
8
4
]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,点(1,
3
4
a)在椭圆上.直线x+y-m=0与椭圆恰有一个公共点.
(Ⅰ)求m的值;
(Ⅱ)已知O为坐标原点,P为椭圆上的动点,作正方形OPMN(O,P,M,N按顺时针方向排列),求动点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有两个命题:
(1)关于x的不等式x2+2ax+4>0对一切x∈R恒成立;
(2)函数f(x)=(5-2a)x是增函数,若命题有且只有一个是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出求y=1×3+2×4+3×5+…+99×101值的一个算法的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

沟渠的截面是一个等腰梯形,且两腰与下底边之和为6米,上底长为一腰和下底长之和,试问等腰梯形的腰与上下底长各为多少时,水流最大?并求出截面面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直角梯形ABCD,上底AD=1,下底BC=4,直角腰AB=2,以斜腰CD所在直线为旋转轴旋转一周形成一个几何体.
(1)叙述该几何体的结构特征
(2)画出该几何体的三视图.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x-1
+
1
2-x
的定义域为
 

查看答案和解析>>

同步练习册答案