精英家教网 > 高中数学 > 题目详情
8.观察下面的数阵,容易看出,第n行最右边的数是n2,那么第20行最左边的数是几?第20行所有数的和是多少?

分析 由已知可得第20行最左边的数比第19行最右边的数大1,分别求出前19行和前20行所有数的和,相减可得答案.

解答 解:∵第n行最右边的数是n2
∴第19行最右边的数是192=361,
故第20行最左边的数是362;
第20行最右边的数是202=400,
故第20行共有39个数,
故第20行所有数的和是(362+400)×39÷2=14859.

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.甲、乙两人独立地解决同一个问题,甲能解决这个问题的概率是P1,乙能解决这个问题的概率是P2,那么至少有1人解决这个问题的概率是(  )
A.P1+P2B.P1•P2C.1-P1•P2D.1-(1-P1)(1-P2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在正项等比数列{an}中,a3=1,a7=9,则a5=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.过椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1的右焦点F作两条垂直的弦AB,CD.设AB,CD的中点分别为M,N.求证:直线MN必过定点,并求出这个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.f(x)是定义在[-3,3]上的奇函数,且x>0时,f′(x)cosx<f(x)sinx则不等式f(x)cosx>0的解集是(  )
A.[-3,0]B.$(-\frac{π}{2},0)∪(\frac{π}{2},3]$C.$[-3,-\frac{π}{2})∪(\frac{π}{2},3]$D.$[-3,-\frac{π}{2})∪(0,\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用数学归纳法证明:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在平面直角坐标系xOy中,设a1=2,有一组圆心在x轴正半轴上的圆An(n=1,2,…)与x轴的交点分别为A0(1,0)和An+1(an+1,0).过圆心An作垂直于x轴的直线ln,在第一象限与圆An交于点Bn(an,bn).
(Ⅰ)试求数列{an}的通项公式;
(Ⅱ)设曲边形An+1BnBn+1(阴影所示)的面积为Sn,若对任意n∈N*,$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}≤m$恒成立,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,矩形纸片ABCD的周长为l,面积为S.
(1)当S=4时,求l的最小值;
(2)当l=4时,求S的最大值;
(3)在(2)的结论下,在纸片的四角截去四个边长为t的小正方形,然后做成一个无盖的纸盒,求纸盒的体积V(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解不等式:
(1)解不等式$\frac{3x-7}{{x}^{2}+2x-3}$≥2;
(2)解关于x的不等式(x-2)(ax-2)>0.

查看答案和解析>>

同步练习册答案