精英家教网 > 高中数学 > 题目详情
3.f(x)是定义在[-3,3]上的奇函数,且x>0时,f′(x)cosx<f(x)sinx则不等式f(x)cosx>0的解集是(  )
A.[-3,0]B.$(-\frac{π}{2},0)∪(\frac{π}{2},3]$C.$[-3,-\frac{π}{2})∪(\frac{π}{2},3]$D.$[-3,-\frac{π}{2})∪(0,\frac{π}{2})$

分析 判断F(x)=f(x)cosx是定义在[-3,3]上的奇函数,利用导数F′x)=f′(x)cosx-f(x)sinx,
根据x>0时,f′(x)cosx<f(x)sinx,结合奇偶性得出F(x)=f(x)cosx在[0,3]上是单调递减函数,[-3,0)是单调递增函数,利用特殊值求解不等式即可.

解答 解:∵F(x)=f(x)cosx,f(x)是定义在[-3,3]上的奇函数,
∴F(-x)=f(-x)cos(-x)=-f(x)cosx=-F(x),
∴F(x)=f(x)cosx是定义在[-3,3]上的奇函数,
∵x>0时,f′(x)cosx<f(x)sinx,
∴F(x)=f(x)cosx在[0,3]上是单调递减函数,
[-3,0)是单调递增函数,
∵F($\frac{π}{2}$)=0,F(-$\frac{π}{2}$)=0,
∴不等式f(x)cosx>0的解集[-3,-$\frac{π}{2}$)∪(0,$\frac{π}{2}$),
故选:D

点评 本题考察了学生综合运导数,研究函数的单调性,奇偶性求解不等式,属于综合题目,难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在等比数列{an}中,已知a1=2,a3=8,an>0.
(1)求{an}的通项公式;
(2)令bn=log2an,cn=an+bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知tan2α=$\frac{3}{4}$,α∈$({-\frac{π}{2},\frac{π}{2}})$,f(x)=sin(x+α)+sin(α-x)-2sinα,且对任意的x∈R,恒有f(x)≥0成立,试求$sin(α-\frac{π}{4})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC满足|AB|=3,|AC|=4,O是△ABC所在平面内一点,满足|$\overrightarrow{AO}|=|\overrightarrow{BO}|=|\overrightarrow{CO}$|,且$\overrightarrow{AO}=λ\overrightarrow{AB}+\frac{1-λ}{2}\overrightarrow{AC}$(λ∈R),则cos∠BAC=(  )
A.$\frac{2}{3}$或$\frac{3}{4}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.观察下面的数阵,容易看出,第n行最右边的数是n2,那么第20行最左边的数是几?第20行所有数的和是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.观察下列不等式1>$\frac{1}{2}$,1+$\frac{1}{2}$+$\frac{1}{3}$>1,1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$>$\frac{3}{2}$,1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{15}$>2,…,则可归纳出一般性的不等式1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}-1}$>$\frac{n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知△ABC的边长分别为a,b,c,内切圆半径为r,用S△ABC表示△ABC的面积,则S△ABC=$\frac{1}{2}r$(a+b+c).类比这一结论有:若三棱锥A-BCD的内切球半径为R,各面的面积分别为S1,S2,S3,S4,则三棱锥体积VA-BCD=$\frac{1}{3}$R(S1+S2+S3+S4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某人设计了一个图案如图所示,他有四个颜色想都涂在这个图案的六个区域中,相邻不能同色(如①②为相邻,①⑤为不相邻等),他有(  )种涂色方法.
A.408B.336C.360D.384

查看答案和解析>>

同步练习册答案