精英家教网 > 高中数学 > 题目详情
9.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T0,经过一定时间t后的温度是T,则T-Ta=(T0-Ta)•$(\frac{1}{2})^{\frac{t}{h}}$,其中Ta称为环境温度,h称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降到40℃需要20分钟,那么此杯咖啡从40℃降温到32℃时,还需要10分钟.

分析 由题意直接利用已知条件求解函数的解析式,然后求解即可.

解答 解:设物体的初始温度是T0,经过一定时间t后的温度是T,则T-Ta=(T0-Ta)•$(\frac{1}{2})^{\frac{t}{h}}$,其中Ta称为环境温度,h称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降到40℃需要20分钟,
可得Ta=24,T0=88,T=40,
可得:40-24=(88-24)${(\frac{1}{2})}^{\frac{20}{h}}$,解得h=10,
此杯咖啡从40℃降温到32℃时,可得:32-24=(40-24)${(\frac{1}{2})}^{\frac{t}{10}}$,解得t=10.
故答案为:10.

点评 本题考查函数的值的求法,函数与方程的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(2,0),若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$+λ$\overrightarrow{b}$垂直,则λ的值等于(  )
A.-6B.-2C.6D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{2}$=1(a>0),过x轴上一点Q(t,0),且斜率为k≠0的动直线l交椭圆E于A、B两点,A′与A关于x轴对称,直线BA′交x轴于点P,当t=0,k=$\sqrt{2}$时,|AB|=$\frac{4\sqrt{15}}{5}$.
(1)求a;
(2)若t≠0,则|OP|•|OQ|是否为定值?若是求出这个定值,若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2$\sqrt{3}$,a+b=6,$\frac{acosB+bcosA}{c}$=2cosC,则
c=(  )
A.2$\sqrt{7}$B.4C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图ABCD为正方形,VD⊥平面ABCD,VD=AD=2,F为VA中点,E为CD中点.
①求证:DF∥平面VEB;
②求平面VEB与平面VAD所成二面角的余弦值;
③V、D、C、B四点在同一个球面上,所在球的球面面积为S,求S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.根据如图所示的伪代码,可知输出的结果S=17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题p:y=|sinx|是偶函数,命题q:y=sin|x|是周期为π的周期函数,则下列命题中为真命题的是(  )
A.p∧qB.p∨qC.(¬p)∧qD.(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.对140名学生用系统抽样的方法抽取20人的样本,将学生编号1-140号,按序号一次分成20组,第15组抽取的四102号,那么第二组抽取的号码为11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.以(1,2)为圆心,$\sqrt{5}$为半径的圆的方程为(  )
A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2-2x-4y=0D.x2+y2+2x-4y=0

查看答案和解析>>

同步练习册答案