分析 由已知利用同角三角函数基本关系式可求tanα,利用二倍角的正切函数公式可求tan2α,利用二倍角公式,同角三角函数基本关系式可求cos2α.
解答 解:∵sinα=2cosα,
∴tanα=2,
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=-$\frac{4}{3}$,
∴cos2α=cos2α-sin2α=$\frac{co{s}^{2}α-si{n}^{2}α}{co{s}^{2}α+si{n}^{2}α}$=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=-$\frac{3}{5}$.
故答案为:-$\frac{4}{3}$,-$\frac{3}{5}$.
点评 本题主要考查了同角三角函数基本关系式,二倍角的正切函数公式二倍角余弦函数公式在三角函数化简求值中的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 12 | D. | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [7,8] | B. | [0,8] | C. | [$\frac{11}{2}$,8] | D. | [$\frac{11}{2}$,7] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{8}$ | B. | $\frac{{\sqrt{2}}}{6}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com