精英家教网 > 高中数学 > 题目详情
19.已知sinα=2cosα,则tan2α=-$\frac{4}{3}$,cos2α=-$\frac{3}{5}$.

分析 由已知利用同角三角函数基本关系式可求tanα,利用二倍角的正切函数公式可求tan2α,利用二倍角公式,同角三角函数基本关系式可求cos2α.

解答 解:∵sinα=2cosα,
∴tanα=2,
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=-$\frac{4}{3}$,
∴cos2α=cos2α-sin2α=$\frac{co{s}^{2}α-si{n}^{2}α}{co{s}^{2}α+si{n}^{2}α}$=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=-$\frac{3}{5}$.
故答案为:-$\frac{4}{3}$,-$\frac{3}{5}$.

点评 本题主要考查了同角三角函数基本关系式,二倍角的正切函数公式二倍角余弦函数公式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.函数f(x)是定义在R上的偶函数,其图象关于直线x=1对称,若f(1)=2016,则f(2015)=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图的程序框图,若输入x=-2016,则输出的结果为(  )
A.2015B.2016C.2116D.2048

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{3x-y-3≤0}\\{y≥0}\end{array}\right.$,则z=3x+2y的最大值为(  )
A.2B.3C.12D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“k=1”是“直线l1:kx+y+2=0与直线l2:x+ky-k=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等比数列{an}的前n项和为Sn,a3=1且a4,a3+a5,a6为等差数列{bn}的前三项.
(1)求Sn与数列{bn}的通项公式;
(2)设数列{$\frac{1}{{{b_n}{b_{n+1}}}$}的前n项和Tn,试问是否存在正整数m,对任意的n∈N*使得Tn•bm≤1?若存在请求出m的最大值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y-5≤0}\\{x-y-2≤0}\\{x≥0}\end{array}\right.$,则z=|2x+3y-2|的取值范围是(  )
A.[7,8]B.[0,8]C.[$\frac{11}{2}$,8]D.[$\frac{11}{2}$,7]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l:y=k(x+2),曲线$Γ:\sqrt{1-{{(x-1)}^2}}-y=0$,则当k∈[-1,1],直线l与曲线Γ有两个交点的概率为(  )
A.$\frac{{\sqrt{2}}}{8}$B.$\frac{{\sqrt{2}}}{6}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD是棱长为a正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,AC与BD交于O点.
(1)求证:BC⊥平面PCD;
(2)求点C到平面BED的距离.

查看答案和解析>>

同步练习册答案