精英家教网 > 高中数学 > 题目详情
(本小题10分)
,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)点为当时轨迹E上的任意一点,定点的坐标为(3,0),
满足,试求点的轨迹方程。

(1) 当m=0时,方程表示两直线,方程为;
时, 方程表示的是圆
时,方程表示的是椭圆
(2)
解:(1)因为,,,
所以,   即.    
当m=0时,方程表示两直线,方程为;
时, 方程表示的是圆
时,方程表示的是椭圆;
时,方程表示的是双曲线.
(2)设
,
时,轨迹E为,点
所以点的轨迹方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

本小题满分12分
的内切圆与三边的切点分别为,已知,内切圆圆心,设点的轨迹为.

(1)求的方程;
(2)过点的动直线交曲线于不同的两点(点轴的上方),问在轴上是否存在一定点不与重合),使恒成立,若存在,试求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线与椭圆共焦点,且以为渐近线,求双曲线方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
分别是椭圆的左、右焦点,过斜率为1的直线相交于两点,且成等差数列。
(Ⅰ)求的离心率;     
(Ⅱ)设点满足,求的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点P与平面上两定点连线的斜率的积为定值.
(1)试求动点P的轨迹方程C.
(2)设直线与曲线C交于M、N两点,求|MN|

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知定点,动点满足
(1)求动点的轨迹方程,并说明方程表示什么曲线;
(2)当时,求的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在平面直角坐标系中,已知),,O为坐标原点,若实数使向量满足:,设点P的轨迹为
(Ⅰ)求的方程,并判断是怎样的曲线;
(Ⅱ)当时,过点且斜率为1的直线与相交的另一个交点为,能否在直线上找到一点,恰使为正三角形?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



(本小题满分10分)
如图,在平面直角坐标系中,点在第一象限内,轴于点 .
(1)求的长;
(2)记.(为锐角),求sina,sin的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知⊙O:,直线交⊙O于A、B两点,分别过A、B作⊙O的切线,交于M点。
(Ⅰ) 当时,求弦长AB;
(Ⅱ) 若直线过点(1,1),求点的轨迹方程。

查看答案和解析>>

同步练习册答案