精英家教网 > 高中数学 > 题目详情
已知双曲线与椭圆共焦点,且以为渐近线,求双曲线方程
解:由椭圆. 
设双曲线方程为,则 
故所求双曲线方程为
(或设同样给分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知点C(4,0)和直线 P是动点,作垂足为Q,且设P点的轨迹是曲线M。
(1)求曲线M的方程;
(2)点O是坐标原点,是否存在斜率为1的直线m,使m与M交于A、B两点,且若存在,求出直线m的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
已知点,一动圆过点且与圆内切,
(1)求动圆圆心的轨迹的方程;
(2)设点,点为曲线上任一点,求点到点距离的最大值
(3)在的条件下,设△的面积为(是坐标原点,是曲线上横坐标为的点),以为边长的正方形的面积为.若正数满足,问是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知椭圆的两焦点为,离心率.(1)求此椭圆的方程;(2)设直线,若与此椭圆相交于两点,且等于椭圆的短轴长,求的值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题10分)
,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)点为当时轨迹E上的任意一点,定点的坐标为(3,0),
满足,试求点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是⊙上的任意一点,过垂直轴于,动点满足
(1)求动点的轨迹方程;
(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使的中点,若存在,求出直线的方程,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P到点M(-1,0)的距离与点P到点N(1,0)的距离之比为
(1)求点P到轨迹方程H;
(2)过点M做H的切线,求点N到的距离;
(3)求H关于直线对称的曲线方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F是椭圆的右焦点,椭圆上的点与点F的最大距离为M,最小距离为N,则椭圆
上与点F的距离等于的点的坐标是                                 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)两定点的坐标分别A(-1,0),B(2,0),动点M满足条件,求动点M的轨迹方程并指出轨迹是什么图形.

查看答案和解析>>

同步练习册答案