精英家教网 > 高中数学 > 题目详情
9.将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=$\sqrt{2}$.
(1)求证:DE⊥AC.
(2)求DE与平面BEC所成角的正切值.
(3)直线BE上是否存在一点M,使得CM∥平面ADE?若存在,求点M的位置;若不存在,请说明理由.

分析 (1)以A为坐标原点,AB,AD,AE所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,求出所用点的坐标,然后利用$\overrightarrow{DE}•\overrightarrow{AC}$=(0,-2,$\sqrt{2}$)•(1,1,$\sqrt{2}$)=0,可知DE⊥AC;
(2)求出平面BCE的法向量为$\overrightarrow{n}$,设DE与平面BEC所成的角为θ,由sinθ=|cos<$\overrightarrow{n},\overrightarrow{DE}$>|=$\frac{|\overrightarrow{n}•\overrightarrow{DE}|}{|\overrightarrow{n}||\overrightarrow{DE}|}=\frac{\sqrt{6}}{3}$,再求出cosθ,利用商的关系可得tanθ;
(3)假设存在点M使得CM∥平面ADE,且$\overrightarrow{EM}=λ\overrightarrow{EB}$,由此向量等式求出M的坐标,得到$\overrightarrow{CM}$,再由AB⊥平面ADE,结合$\overrightarrow{CM}•\overrightarrow{AB}=0$求得λ值得答案.

解答 (1)证明:以A为坐标原点,AB,AD,AE所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,则E(0,0,$\sqrt{2}$),
B(2,0,0),D(0,2,0).
取BD的中点F并连接CF,AF.由题意得,CF⊥BD且AF=CF=$\sqrt{2}$.
又∵平面BDA⊥平面BDC,
∴CF⊥平面BDA,
∴C(1,1,$\sqrt{2}$),
∴$\overrightarrow{DE}$=(0,-2,$\sqrt{2}$),$\overrightarrow{AC}$=(1,1,$\sqrt{2}$).
∵$\overrightarrow{DE}•\overrightarrow{AC}$=(0,-2,$\sqrt{2}$)•(1,1,$\sqrt{2}$)=0,
∴DE⊥AC;
(2)解:设平面BCE的法向量为$\overrightarrow{n}$=(x,y,z),则
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EB}=2x-\sqrt{2}z=0}\\{\overrightarrow{n}•\overrightarrow{CB}=x-y-\sqrt{2}z=0}\end{array}\right.$,令x=1,得$\overrightarrow{n}$=(1,-1,$\sqrt{2}$).
设DE与平面BEC所成的角为θ,则
sinθ=|cos<$\overrightarrow{n},\overrightarrow{DE}$>|=$\frac{|\overrightarrow{n}•\overrightarrow{DE}|}{|\overrightarrow{n}||\overrightarrow{DE}|}=\frac{\sqrt{6}}{3}$,
∴$cosθ=\frac{{\sqrt{3}}}{3},tanθ=\sqrt{2}$;
(3)解:假设存在点M使得CM∥平面ADE,且$\overrightarrow{EM}=λ\overrightarrow{EB}$,
∵$\overrightarrow{EB}=(2,0,-\sqrt{2})$,∴$\overrightarrow{EM}=(2λ,0,-\sqrt{2}λ)$,
得M(2λ,0,$\sqrt{2}-\sqrt{2}λ$),
∴$\overrightarrow{CM}=(2λ-1,-1,-\sqrt{2}λ)$,
又AB⊥平面ADE,
∴$\overrightarrow{AB}$=(2,0,0)为平面ADE的一个法向量.
∵CM∥平面ADE,∴$\overrightarrow{CM}⊥\overrightarrow{AB}$,即$\overrightarrow{CM}•\overrightarrow{AB}=0$.
即2(2λ-1)=0,∴λ=$\frac{1}{2}$.
故点M为BE的中点时,CM∥平面ADE.

点评 本题考查直线与平面平行的判定,考查直线与平面垂直的性质,训练了利用空间向量求线面角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,某生态园将一块三角形地ABC的一角APQ开辟为水果园,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP、AQ总长度为200米,如何可使得三角形地块APQ面积最大?
(2)已知竹篱笆长为50$\sqrt{3}$米,AP段围墙高1米,AQ段围墙高2米,造价均为每平方米100元,若AP≥AQ,求围墙总造价的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x$({{e^x}-\frac{1}{e^x}})$,若f(x1)<f(x2),则(  )
A.x1>x2B.x1<x2C.${x}_{1}^{2}$<${x}_{2}^{2}$D.x1+x2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将二项式${(x+\frac{2}{{\sqrt{x}}})^6}$展开式各项重新排列,则其中无理项互不相邻的概率是(  )
A.$\frac{2}{7}$B.$\frac{1}{35}$C.$\frac{8}{35}$D.$\frac{7}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=2,四棱锥P-ABCD的五个顶点都在一个球面上,则这个球的表面积是12π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如图,记成绩不低于70分者为“成绩优良”.

(1)分别计算甲、乙两班20个样本中,化学分数前十的平均分,并据此判断哪种教学方式的教学效果更
佳;
(2)甲、乙两班40个样本中,成绩在60分以下的学生中任意选取2人,求这2人来自不同班级的概率;
(3)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
甲班乙班总计
成绩优良101626
成绩不优良10414
总计202040
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)},(n=a+b+c+d)$
独立性检验临界值表:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数z满足$({\sqrt{2}+i})z=3i$(i为虚数单位),则z的共轭复数为(  )
A.$\sqrt{2}+i$B.$\sqrt{2}-i$C.$1+\sqrt{2}i$D.$1-\sqrt{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图所示的算法流程图中,输出S的值为49.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{x}{lnx}$的单调递减区间是(  )
A.(0,e)B.(0,1),(1,e)C.(e,+∞)D.(-∞,e)

查看答案和解析>>

同步练习册答案