精英家教网 > 高中数学 > 题目详情
16.设集合M={x|x2-2x-3<0},N为自然数集,则M∩N等于(  )
A.{-2,-1,0}B.{0,1,2}C.[-2,0]D.[0,2]

分析 解出关于M的不等式,求出M、N的交集即可.

解答 解:由M={x|x2-2x-3<0}={x|-1<x<3},
N是自然数集,
则M∩N={0,1,2}
故选:A.

点评 本题考查了集合的运算,考查解不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.不等式x2-3>2|x|的解集是(-∞,-3)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的中心在原点,左焦点为F1(-1,0),右准线方程为:x=4.
(1)求椭圆C的标准方程;
(2)若椭圆C上点N到定点M(m,0)(0<m<2)的距离的最小值为1,求m的值及点N的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若函数f(x)在定义域D内某区间I上是增函数,而F(x)=$\frac{f(x)}{x}$在I上是减函数,则称y=f(x)在I上是“弱增函数”.
(1)请分别判断f(x)=x+4,g(x)=x2+4x+2在x∈(1,2)是否是“弱增函数”,
并简要说明理由;
(2)若函数h(x)=x2+(sinθ-$\frac{1}{2}$)x+b(θ、b是常数)
(i)若θ∈[{0,$\frac{π}{2}}$],x∈[0,$\frac{1}{4}}$]求h(x)的最小值.(用θ、b表示);
(ii)在x∈(0,1]上是“弱增函数”,试探讨θ及正数b应满足的条件,并用单调性的定义证明..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p1:设函数f(x)=ax2+bx+c(a>0),且f(1)=-a,则f(x)在(0,2)上必有零点;
p2:设a,b∈R,则“a>b”是“a|a|>b|b|”的充分不必要条件.
则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q1:p1∧(¬p2)中,真命题是(  )
A.q1,q3B.q2,q3C.q1,q4D.q2,q4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线y=4x+8与两坐标轴所围成的三角形的面积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB,E是PD的中点.
(1)求证:PB∥平面EAC;
(2)求证:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.(1-i)2016+(1+i)2016的值是(  )
A.21008B.21009C.0D.22016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平行四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,$\overrightarrow{DE}$=2$\overrightarrow{EC}$,则$\overrightarrow{BE}$=(  )
A.$\overrightarrow{b}$-$\frac{1}{3}$$\overrightarrow{a}$B.$\overrightarrow{b}$-$\frac{2}{3}$$\overrightarrow{a}$C.$\overrightarrow{b}$-$\frac{4}{3}$$\overrightarrow{a}$D.$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{a}$

查看答案和解析>>

同步练习册答案