精英家教网 > 高中数学 > 题目详情
8.已知$f(x)=2\sqrt{3}sin(3ωx+\frac{π}{3})({ω>0})$,且f(x+θ)是最小正周期为2π的偶函数.   
(1)求ω,θ的值;
(2)求f(x)在区间[0,π]上的最值及此时的x值;
(3)若$|θ|<\frac{π}{2}$,求y=cos(2x+θ)在[-π,π]的单增区间.

分析 (1)根据题意,利用三角函数的图象与性质求出ω和θ的值;
(2)写出f(x)的解析式,根据x的取值范围求出f(x)的最值以及对应x的值;
(3)讨论θ的取值范围,求出对应g(x)的单调增区间即可.

解答 解:(1)由于f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$),
可得f(x+θ)=2$\sqrt{3}$sin[3ω(x+θ)+$\frac{π}{3}$]=2$\sqrt{3}$sin(3ωx+3ωθ+$\frac{π}{3}$),
再根据f(x+θ)是周期为2π的偶函数,
可得$\frac{2π}{3ω}$=2π,3ωθ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z;
求得ω=$\frac{1}{3}$,θ=kπ+$\frac{π}{6}$,k∈Z;
(2)由(1)知,f(x)=2$\sqrt{3}$sin(x+$\frac{π}{3}$),
当x∈[0,π]时,x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],sin(x+$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],
2$\sqrt{3}$sin(x+$\frac{π}{3}$)∈[-3,2$\sqrt{3}$],即f(x)∈[-3,2$\sqrt{3}$],
∴x+$\frac{π}{3}$=$\frac{4π}{3}$,即x=π时,f(x)取得最小值-3;
x+$\frac{π}{3}$=$\frac{π}{2}$,即x=$\frac{π}{6}$时,f(x)取得最大值2$\sqrt{3}$;
(3)当|θ|<$\frac{π}{2}$时,-$\frac{π}{2}$<θ<$\frac{π}{2}$,
又x∈[-π,π],∴2x∈[-2π,2π],
∴2x+θ∈[-2π+θ,2π+θ];
当-$\frac{π}{2}$<θ≤0时,-$\frac{5π}{2}$<-2π+θ≤-2π,
∴g(x)的单调增区间是[-π,-π-$\frac{θ}{2}$],[$\frac{-π-θ}{2}$,-$\frac{θ}{2}$],[$\frac{π-θ}{2}$,π];
当0<θ<$\frac{π}{2}$时,2π<2π+θ<$\frac{5π}{2}$,
∴g(x)的单调增区间是[$\frac{-π-θ}{2}$,-$\frac{θ}{2}$],[$\frac{π-θ}{2}$,π-$\frac{θ}{2}$].

点评 本题考查了三角函数的图象与性质的应用问题问题,也考查了函数的单调性和最值问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左顶点为A,上下两个顶点分别为B,C,若左焦点是△ABC的垂心,则椭圆的离心率为$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,A、B、C所对的边分别为a、b、c,若bcosA+acosB=c2,a=b=2,则△ABC的周长为(  )
A.7.5B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若规定集合M={a1,a2,…,an}(n∈N*)的子集{a${\;}_{{i}_{1}}$,a${\;}_{{i}_{2}}$,…a${\;}_{{i}_{m}}$}(m∈N*)为M的第k个子集,其中k=2${\;}^{{i}_{1}-1}$+2${\;}^{{i}_{2}-1}$+…+2${\;}^{{i}_{n}-1}$,则M的第25个子集是{a1,a4,a5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=2x+1,x∈{1,2,3}的值域是(  )
A.RB.[1,3]C.{1,2,3}D.{3,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an}是递增数列,Sn是{an}的前n项和,若a1,a3是方程x2-5x+4=0的两根,则S6的值为(  )
A.63B.-63C.-21D.63或-21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=asinωx+bcosωx(ω>0)的图象如图所示,则a,b的取值范围分别为(  )
A.$\sqrt{3},1$B.$-\sqrt{3},1$C.$\sqrt{3},-1$D.-3,-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线mx+y-1=0与直线x+(3-2m)y=0互相垂直,则实数m的值3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c.已知$\overrightarrow{AB}$•$\overrightarrow{BC}$=-2,cosB=$\frac{1}{3}$,b=3.求:
(Ⅰ)a和c的值;
(Ⅱ)cos(B-C)的值.

查看答案和解析>>

同步练习册答案