精英家教网 > 高中数学 > 题目详情
5.在数列{an}中,已知a1=2,an+1=an+n+1,则a10=56.

分析 利用“累加求和”方法、等差数列的求和公式即可得出.

解答 解:∵an+1=an+n+1,即an+1-an=n+1,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=n+(n-1)+…+2+2
=$\frac{n(n+1)}{2}$+1,
则a10=$\frac{10×11}{2}$+1=56.
故答案为:56.

点评 本题考查了“累加求和”方法、等差数列的求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x2+ax-2a-3)ex,其中a∈R,e=2.71828…为自然对数的底数.
(1)讨论函数f(x)的单调性;
(2)当x∈[0,1]时,若函数f(x)的图象恒在直线y=e的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A(2,3),B(-1,5),且$\overrightarrow{AC}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{AD}$=3$\overrightarrow{AB}$,则$\overrightarrow{CD}$的坐标为(-8,$\frac{16}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知z=a+bi(a、b∈R,i是虚数单位,$\overline{z_1}$是z的共轭复数),z1,z2∈C,定义D(z)=||z||=|a|+|b|,D(z1,z2)=||z1-z2||.现有三个命题:
①D(${\overline{z_1}}$)=D(z1);       ②D(z1,z2)=D(z2,z1);      ③λD(z1,z2)=D(λz1,λz2).
其中为真命题的是(  )
A.①②③B.①③C.②③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(1-2x)4展开式中第3项的二项式系数为(  )
A.6B.-6C.24D.-24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2x-1的值是否可以同时大于x-5和3x+1的值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知椭圆:$\frac{{x}^{2}}{9}$+y2=1,过左焦点F作倾斜角为$\frac{π}{6}$的直线交椭圆A、B两点,求弦AB的长;
(2)已知椭圆4x2+y2=1及直线y=x+m,若直线被椭圆截得的弦长为$\frac{2\sqrt{10}}{5}$,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=ax2-(2a-1)x-lnx,其中a∈R.
(Ⅰ)当a>0时,求函数f(x)的单调递增区间;
(Ⅱ)当a<0时,求函数f(x)在区间[$\frac{1}{2}$,1]上的最小值;
(Ⅲ)记函数y=f(x)的图象为曲线C,设点A(x1,y1),B(x2,y2)是曲线C上不同的两点,点M为线段AB的中点,过点M作x轴的垂线交曲线C于点N,试判断曲线C在N处的切线是否平行于直线AB?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\frac{x+1}{{e}^{x}}$.
(1)求函数y=f(x)最值;
(2)若f(x1)=f(x2)(x1≠x2),求证:x1+x2>O.

查看答案和解析>>

同步练习册答案