精英家教网 > 高中数学 > 题目详情
13.已知z=a+bi(a、b∈R,i是虚数单位,$\overline{z_1}$是z的共轭复数),z1,z2∈C,定义D(z)=||z||=|a|+|b|,D(z1,z2)=||z1-z2||.现有三个命题:
①D(${\overline{z_1}}$)=D(z1);       ②D(z1,z2)=D(z2,z1);      ③λD(z1,z2)=D(λz1,λz2).
其中为真命题的是(  )
A.①②③B.①③C.②③D.①②

分析 由已知新定义逐一计算三个命题的左右两边得答案.

解答 解:∵z=a+bi,且定义义D(z)=||z||=|a|+|b|,D(z1,z2)=||z1-z2||.
不妨设z1=a+bi(a,b∈R),z2=c+di(c,d∈R),
则$\overline{{z}_{1}}=a-bi,\overline{{z}_{2}}=c-di$,
∴D(${\overline{z_1}}$)=|a|+|-b|=|a|+|b|,D(z1)=|a|+|b|,则D(${\overline{z_1}}$)=D(z1),故①正确;
 D(z1,z2)=||z1-z2||=||(a-c)+(b-d)i||=|a-c|+|b-d|,D(z2,z1)=||(c-a)+(d-b)i||=|c-a|+|d-b|=|a-c|+|b-d|,故②正确;     
 λD(z1,z2)=λ|a-c|+λ|b-d|,D(λz1,λz2)=||λz1-λz2||=||(λa-λc)+(λb-λd)i||=|λa-λc|+|λb-λd|=|λ|D(z1,z2),故③错误.
∴①②为真命题.
故选:D.

点评 本题考查命题的真假判断与应用,考查新定义下的复数运算,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的焦距为2$\sqrt{3}$,离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的方程;
(2)若M,N,P是椭圆C上不同的三点,且满足$\overrightarrow{OM}+λ\overrightarrow{ON}=\overrightarrow{OP}$(O为坐标原点),求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.使用带余除法证明,对任意正整数n,有(x-a)都是(xn-an)的一个因式.并由此证明f(x)≡(x-a)•h(x)+f(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:方程x2+mx+1=0有两个不相等的负实根,命题q:函数y=x2-2mx-3在区间(1,3)上有最小值.若“p或q”为真,而“p且q”为假,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)为y=-x+6和y=-x2+4x+6中较小者,则函数f(x)的最大值为(  )
A.0B.6C.10D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右顶点A(2,0)和上顶点B,直线AB被圆T:x2+y2-10x+16=0所截得的弦长为$\frac{{12\sqrt{7}}}{7}$.
(1)求椭圆E的方程;
(2)过椭圆E的右焦点作不过原点的直线l与椭圆E交于M,N两点,直线MA,NA与直线x=3分别交于C,D两点,记△ACD的面积为S,求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在数列{an}中,已知a1=2,an+1=an+n+1,则a10=56.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在四面体ABCD中,已知AB=CD=$\sqrt{13}$,BC=DA=$\sqrt{0}$,AC=BD=$\sqrt{5}$,E,F分别是棱AC,BD的中点,则EF的长为(  )
A.3B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知四棱锥P-ABCD的外接球的表面积为12π,ABCD是边长为2的正方形,PA=PB,平面PAB⊥平面ABCD,则△PCD的面积为(  )
A.$\sqrt{7+2\sqrt{2}}$B.$\sqrt{14}$C.$\sqrt{15}$D.4

查看答案和解析>>

同步练习册答案