精英家教网 > 高中数学 > 题目详情
12.在四面体ABCD中,已知AB=CD=$\sqrt{13}$,BC=DA=$\sqrt{0}$,AC=BD=$\sqrt{5}$,E,F分别是棱AC,BD的中点,则EF的长为(  )
A.3B.$\sqrt{3}$C.$\sqrt{2}$D.1

分析 由题意构造出图形,然后列方程组求解.

解答 解:如图,

作过一个顶点的三条棱长分别为a,b,c的长方体,使其侧面对角线分别为AB=CD=$\sqrt{13}$,BC=DA=$\sqrt{10}$,AC=BD=$\sqrt{5}$,
则$\left\{\begin{array}{l}{{a}^{2}+{c}^{2}=13}\\{{a}^{2}+{b}^{2}=5}\\{{b}^{2}+{c}^{2}=10}\end{array}\right.$,解得a=2,b=1,c=3.
∴EF的长为c=3.
故选:A.

点评 本题考查棱锥的结构特征,考查了数形结合的解题思想方法,正确作出图形是解答该题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图所示,平行四边形ABCD中,M为DC的中点,N是BC的中点,设$\overrightarrow{AB}$=$\overrightarrow{b}$,$\overrightarrow{AD}$=$\overrightarrow{d}$,$\overrightarrow{AM}$=$\overrightarrow{m}$,$\overrightarrow{AN}$=$\overrightarrow{n}$.
(1)试以$\overrightarrow{b}$,$\overrightarrow{d}$为基底表示$\overrightarrow{MN}$;
(2)试以$\overrightarrow{m}$,$\overrightarrow{n}$为基底表示$\overrightarrow{AB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知z=a+bi(a、b∈R,i是虚数单位,$\overline{z_1}$是z的共轭复数),z1,z2∈C,定义D(z)=||z||=|a|+|b|,D(z1,z2)=||z1-z2||.现有三个命题:
①D(${\overline{z_1}}$)=D(z1);       ②D(z1,z2)=D(z2,z1);      ③λD(z1,z2)=D(λz1,λz2).
其中为真命题的是(  )
A.①②③B.①③C.②③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2x-1的值是否可以同时大于x-5和3x+1的值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知椭圆:$\frac{{x}^{2}}{9}$+y2=1,过左焦点F作倾斜角为$\frac{π}{6}$的直线交椭圆A、B两点,求弦AB的长;
(2)已知椭圆4x2+y2=1及直线y=x+m,若直线被椭圆截得的弦长为$\frac{2\sqrt{10}}{5}$,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2+ax-lnx+1(a∈R),g(x)=x2-1
(Ⅰ)当a=-1时,求函数y=f(x)的单调区间;
(Ⅱ)设函数m(x)=f(x)-g(x),当x∈(0,e2]时,是否存在实数a,使得函数y=m(x)的最小值为4?若存在,求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=ax2-(2a-1)x-lnx,其中a∈R.
(Ⅰ)当a>0时,求函数f(x)的单调递增区间;
(Ⅱ)当a<0时,求函数f(x)在区间[$\frac{1}{2}$,1]上的最小值;
(Ⅲ)记函数y=f(x)的图象为曲线C,设点A(x1,y1),B(x2,y2)是曲线C上不同的两点,点M为线段AB的中点,过点M作x轴的垂线交曲线C于点N,试判断曲线C在N处的切线是否平行于直线AB?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=aex-x-1,a∈R.
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)当x∈(0,+∞)时,f(x)>0恒成立,求a的取值范围;
(Ⅲ)求证:当x∈(0,+∞)时,ln$\frac{{e}^{x}-1}{x}$>$\frac{x}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义:若函数y=f(x)对定义域内的任意x,都有f(m+x)=f(m-x)恒成立,则称函数y=f(x)的图象的直线x=m对称,若函数f(x)=cx3+ax2+bx+1关于直线x=$\frac{1}{2}$对称,且a>4(${\sqrt{e}$+1),则函数g(x)=ex+f(x)在下列区间内存在零点的是(  )
A.(-1,-$\frac{1}{2}}$)B.(-$\frac{1}{2}$,0)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

同步练习册答案