精英家教网 > 高中数学 > 题目详情
8.已知角α的终边与圆x2+y2=4相交于点P(1,-$\sqrt{3}$),则sinα的值为(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 根据三角函数的定义进行求解即可.

解答 解:角α的终边与圆x2+y2=4相交于点p(1,-$\sqrt{3}$),
则r=|OP|=2,
则sinα=$\frac{y}{r}=\frac{-\sqrt{3}}{2}$=-$\frac{\sqrt{3}}{2}$,
故选:A.

点评 本题主要考查三角函数值的求解,根据三角函数的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.过点P(4,1)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为(  )
A.3x-y-4=0B.4x+y-4=0C.4x-y-4=0D.3x+y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex•(x2-mx)在x=$\sqrt{2}$处取得极小值.
(Ⅰ)求m的值;
(Ⅱ)设g(x)=ln(ax+1)-$\frac{{x}^{2}-1}{\frac{f(x)}{{e}^{x}}+4x+1}$(a>0),若g(x)在[0,+∞)上的最小值为1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax3,函数g(x)=x2+bx+c满足g(1)=g(3)=-6.
(1)当a=-$\frac{2}{3}$时,求函数h(x)=f(x)-g(x)在[0,$\sqrt{3}$)上的最值;
(2)当x∈[-2,0]时,f(x)≥g(x)恒成立,求实数a的取值范围
附:(xa)′=axα-1,这里α∈Q.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若圆柱OO′的底面半径与高均为1,则其表面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[$\frac{π}{2}$,$\frac{3π}{2}$]
(1)求|$\overrightarrow{a}$+$\overrightarrow{b}$|的取值范围;
(2)若f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-|$\overrightarrow{a}$+$\overrightarrow{b}$|,试求f(x)的最小值,并求出此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,有一条长为50$\sqrt{2}$(米)的斜坡AB,它的坡角为45°,现保持坡高AC不变,将坡角改为30°,则斜坡AD的长为100(米).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.曲线y=x2+3x在点A(2,10)处的切线的斜率k是(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若存在实数x,使x2-4bx+3b<0成立,则b的取值范围是(-∞,0)∪($\frac{3}{4}$.+∞).

查看答案和解析>>

同步练习册答案