精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=ex•(x2-mx)在x=$\sqrt{2}$处取得极小值.
(Ⅰ)求m的值;
(Ⅱ)设g(x)=ln(ax+1)-$\frac{{x}^{2}-1}{\frac{f(x)}{{e}^{x}}+4x+1}$(a>0),若g(x)在[0,+∞)上的最小值为1,求实数a的取值范围.

分析 (Ⅰ)先求出f(x)的导数,根据f′($\sqrt{2}$)=0,从而求出m的值;(Ⅱ)先求出函数g(x)的表达式,结合g(x)的单调性,得到关于a的不等式,解出即可.

解答 解:(Ⅰ)f′(x)=ex[x2+(2-m)x-m],
由f′($\sqrt{2}$)=0,得:2+(2-m)$\sqrt{2}$-m=0,
解得:m=2,
(Ⅱ)由(Ⅰ)得:f(x)=ex(x2-2x),
∴$\frac{f(x)}{{e}^{x}}$=x2-2x,
∴g(x)=ln(ax+1)-$\frac{{x}^{2}-1}{{(x+1)}^{2}}$=ln(ax+1)+$\frac{2}{x+1}$-1,
∴g′(x)=$\frac{a}{ax+1}$-$\frac{2}{{(x+1)}^{2}}$=$\frac{{a(x+1)}^{2}-2(ax+1)}{(ax+1)({x+1)}^{2}}$,
当x=0时,g(0)=1,
∴当函数g(x)在[0,+∞)单调递增时,g(x)min=g(0)=1,
∴g′(x)≥0,
令h(x)=a(x+1)2-2(ax+1)=ax2+a-2≥0在[0,+∞)恒成立,
∴a-2≥0,解得:a≥2.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,(Ⅱ)较复杂,结合函数的单调性可求出答案,本题属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.随机变量ξ的分布列如下:
ξ-101
Pabc
其中a,b,c成等差数列,若期望E(ξ)=$\frac{1}{3}$,则方差V(ξ)的值是$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.根据秦九韶算法求x=-1时f(x)=4x4+3x3-6x2+x-1的值,则v2为(  )
A.-1B.-5C.21D.-22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b,c,d均为实数,函数$f(x)=\frac{a}{3}{x^3}+\frac{b}{2}{x^2}+cx+d$(a<0)有两个极值点x1,x2(x1<x2),满足f(x2)=x1.则关于实数x的方程a[f(x)]2+bf(x)+c=0的实根个数为(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛掷一枚均匀硬币两次,已知有一次是正面向上,则另一次正面向上的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.顶点在原点、焦点在y轴上的抛物线过点P(4,2)上,A、B是抛物线上异于P的不同两点.
(1)求抛物线的标准方程;
(2)设直线PA、PB的斜率分别为k1、k2,且k1+k2=2.
(ⅰ)求证:直线AB的斜率是定值;
(ⅱ)若抛物线在A、B两点处的切线交于点Q,请探究点Q是否在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在上(0,$\frac{π}{4}$)的函数f(x)满足2f(x)<f′(x)tan2x,f′(x)是f(x)的导函数,则(  )
A.$\sqrt{3}$f($\frac{π}{12}$)<f($\frac{π}{6}$)B.f($\frac{1}{4}$)$>2f(\frac{π}{12})$sin$\frac{1}{2}$C.$\sqrt{3}$f($\frac{π}{8}$)>$\sqrt{2}$f($\frac{π}{6}$)D.$\sqrt{2}$f($\frac{π}{12}$)>f($\frac{π}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知角α的终边与圆x2+y2=4相交于点P(1,-$\sqrt{3}$),则sinα的值为(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=(k-2013)x2+(k-2014)x+2015是偶函数,则f(x)的递增区间是[0,+∞).

查看答案和解析>>

同步练习册答案