精英家教网 > 高中数学 > 题目详情
7.已知a,b,c,d均为实数,函数$f(x)=\frac{a}{3}{x^3}+\frac{b}{2}{x^2}+cx+d$(a<0)有两个极值点x1,x2(x1<x2),满足f(x2)=x1.则关于实数x的方程a[f(x)]2+bf(x)+c=0的实根个数为(  )
A.0B.2C.3D.4

分析 求导数f′(x),由题意知x1,x2是方程ax2+bx+c=0的两根,从而关于f(x)的方程a(f(x))2+bf(x)+c=0有两个根,作出草图,由图象可得答案.

解答 解:∵f′(x)=ax2+bx+c,
由题意知x1,x2是方程ax2+bx+c=0的两根,即x1,x2是函数的两个极值点,
x2>x1,从而关于f(x)的方程a[f(x)]2+b[f(x)]+c=0有两个根,
所以f(x)=x1,或f(x)=x2根据题意画图,

所以f(x)=x1有两个不等实根,f(x)=x2只有一个不等实根,
综上方程a[f(x)]2+bf(x)+c=0的不同实根个数为3个.
故选:C.

点评 查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时f(x)>1,
(1)求证:f(x)在R上是增函数;
(2)若f(2)=3,解不等式f(3m2-m-2)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过点P(4,1)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为(  )
A.3x-y-4=0B.4x+y-4=0C.4x-y-4=0D.3x+y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若对任意的实数x,关于x的不等式|a-x+2|+|2a-x+1|≥|a|恒成立,则实数a的取值范围为(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{2x+3}{3x}$,数列{an}满足a1=1,${a_{n+1}}=f(\frac{1}{a_n}),(n∈{N^*})$,
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_{n-1}}{a_n}}}(n≥2)$,b1=3,Sn=b1+b2+…+bn,若${S_n}<\frac{m-2002}{2}$对一切n∈N*成立,求最小正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x~B(n,p),且E(x)=6,D(x)=3,则P(x=1)=$\frac{3}{1024}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex•(x2-mx)在x=$\sqrt{2}$处取得极小值.
(Ⅰ)求m的值;
(Ⅱ)设g(x)=ln(ax+1)-$\frac{{x}^{2}-1}{\frac{f(x)}{{e}^{x}}+4x+1}$(a>0),若g(x)在[0,+∞)上的最小值为1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax3,函数g(x)=x2+bx+c满足g(1)=g(3)=-6.
(1)当a=-$\frac{2}{3}$时,求函数h(x)=f(x)-g(x)在[0,$\sqrt{3}$)上的最值;
(2)当x∈[-2,0]时,f(x)≥g(x)恒成立,求实数a的取值范围
附:(xa)′=axα-1,这里α∈Q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.曲线y=x2+3x在点A(2,10)处的切线的斜率k是(  )
A.7B.6C.5D.4

查看答案和解析>>

同步练习册答案