精英家教网 > 高中数学 > 题目详情
20.在△ABC中,已知|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=1,S△ABC=$\sqrt{3}$,且A是锐角,则$\overrightarrow{AB}$•$\overrightarrow{CA}$的值为-2.

分析 根据三角形的面积公式S△ABC=$\frac{1}{2}AB•ACsinA$解出A,则$\overrightarrow{AB},\overrightarrow{CA}$的夹角为A的补角,代入数量积的定义式计算.

解答 解:∵S△ABC=$\frac{1}{2}AB•ACsinA$,∴2sinA=$\sqrt{3}$,∴A=60°,
∴$\overrightarrow{AB}$•$\overrightarrow{CA}$=AB•AC•cos(180°-60°)=-2.
故答案为-2.

点评 本题考查了平面向量的数量积运算,确定$\overrightarrow{AB},\overrightarrow{CA}$的夹角是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)求PB和平面PAD所成角的大小;
(2)求证:CD⊥AE;
(3)证明:AE⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:
(1)log3$\sqrt{27}-{log_3}\sqrt{3}+lg25+lg4+ln({e^2})$
(2)$(-2•\root{3}{a}•{b^{\frac{1}{2}}})(3•\root{3}{a^2}•{b^{\frac{1}{3}}})÷(-4•{a^{\frac{3}{4}}}•\root{6}{b^5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.与直线3x-2y=0的斜率相等,且过点(-4,3)的直线方程为(  )
A.y-3=-$\frac{3}{2}$(x+4)B.y+3=$\frac{3}{2}$(x-4)C.y-3=$\frac{3}{2}$(x+4)D.y+3=-$\frac{3}{2}$(x-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知偶函数f(x)的定义域为R,且在(-∞,0)上是增函数,试比较$f(-\frac{3}{4})$与f(a2-a+1)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.过双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1的右焦点,倾斜角为30°的直线交双曲线于A、B两点.
(1)求A、B两点的坐标;
(2)求|AB|;
(3)求△AF1B的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\sqrt{{a}^{2}+{b}^{2}}$sin(ωx+φ),x∈R,其中a,b,ω都为正数,在一个周期内的图象如图,满足f(x)<$\frac{{a}^{2}+{b}^{2}}{10}$的x的取值范围是(  )
A.(-∞,2kπ),k∈ZB.(2kπ-π,2kπ),k∈ZC.(2kπ-2π,2kπ),k∈ZD.(2kπ-$\frac{4π}{3}$,2kπ),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知∫${\;}_{-a}^{a}$(2x2+1)3dx=$\frac{16a^7}{7}$+$\frac{24a^5}{5}$+4a3+2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.平面直角坐标系有点P(1,cosx),Q(cosx,1),x∈[$-\frac{π}{4},\frac{π}{4}$];
(1)求向量$\overrightarrow{OP}$和$\overrightarrow{OQ}$的夹角θ的余弦值;
(2)令f(cosx)=cosθ,求f(cosx)的最小值.

查看答案和解析>>

同步练习册答案