精英家教网 > 高中数学 > 题目详情
7.若x,y满足条件$\left\{\begin{array}{l}{2x-y≤1}\\{x+y≤2}\\{y-x≤2}\end{array}\right.$,目标函数z=-3x+2y的最小值为-1.

分析 作出可行域,变形目标函数,平移直线y=$\frac{3}{2}$x结合图象可得.

解答 解:作出条件$\left\{\begin{array}{l}{2x-y≤1}\\{x+y≤2}\\{y-x≤2}\end{array}\right.$所对应的可行域(如图△ABC),
变形目标函数可得y=$\frac{3}{2}$x+$\frac{1}{2}$z,平移直线y=$\frac{3}{2}$x可知
当直线经过点A时,直线的截距最小,
解方程组$\left\{\begin{array}{l}{x+y=2}\\{2x-y=1}\end{array}\right.$可解得A(1,1)
此时目标函数z取最小值z=-3+2=-1
故答案为:-1

点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知△ABC的三个内角分别为A,B,C,且A≠$\frac{π}{2}$.
(Ⅰ)化简$\frac{sin(\frac{3π}{2}+A)•cos(\frac{π}{2}-A)}{cos(B+C)•tan(π+A)}$;
(Ⅱ)若角A满足sinA+cosA=$\frac{1}{5}$.
(i) 试判断△ABC是锐角三角形还是钝角三角形,并说明理由;
(ii) 求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某次考试后,抽取了40位学生的成绩,并根据抽样数据制作的频率分布直方图如图所示,从成绩为[80,100]的学生中随机抽取了2人进行某项调查,则这两人分别来自两个不同分数段内的频率为$\frac{8}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.(x+1)2(x-2)4的展开式中含x3项的系数为(  )
A.16B.40C.-40D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数数列:1,a,81成等比数列,则圆锥曲线x2+$\frac{y^2}{a}$=1的离心率是(  )
A.$\sqrt{10}$ 或$\frac{{2\sqrt{2}}}{3}$B.$\sqrt{3}$或$\frac{{\sqrt{6}}}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$\frac{1}{3}$或10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.以下四个命题:
①若命题“?p”与“p或q”都是真命题,则命题q一定是真命题;
②若x≠kπ(k∈Z),则$sinx+\frac{1}{sinx}≥2$;
③?x0∈R,使$ln({x_0^2+1})<0$;
④由曲线$y=x,y=\frac{1}{x},\left|x\right|=2$围成的封闭图形的面积为$\frac{3}{2}-ln2$.
其中真命题的序号是①(把你认为真命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线l:ax-y+2=0与圆M:x2+y2-4y+3=0的交点为A、B,点C是圆M上的一动点,设点P(0,-1),$\left|{\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}}\right|$的最大值为(  )
A.12B.10C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知抛物线C:y2=4x,焦点F,过点F任作直线l(不垂直于坐标轴)与曲线C交于A,B两点,由A,B分别向(x-1)2+y2=$\frac{1}{4}$各引一条切线,切点分别为P,Q,记α=∠AFP,β=∠BFQ,则cosα+cosβ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.由直线y=x+1上的点向圆C:x2+y2-6x+8=0引切线,求切线长的最小值.

查看答案和解析>>

同步练习册答案