精英家教网 > 高中数学 > 题目详情
的焦点作直线交抛物线与两点,若的长分别是,则                                           (    )
A.B.C.D.

C

考虑特殊位置PQ⊥OP时,,所以,故选C。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知向量,动点到定直线的距离等于,并且满足,其中为坐标原点,为非负实数.
(1)求动点的轨迹方程
(2)若将曲线向左平移一个单位,得曲线,试判断曲线为何种类型;
(3)若(2)中曲线为圆锥曲线,其离心率满足,当是曲线的两个焦点时,则圆锥曲线上恒存在点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中点, P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(Ⅰ)建立适当的平面直角坐标系,求双曲线C的方程;
(Ⅱ)设过点D的直线l与双曲线C相交于不同两点E、F,
若△OEF的面积不小于2,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,过定点作直线与抛物线)相交于两点.
(I)若点是点关于坐标原点的对称点,求面积的最小值;
(II)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,动点满足.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点作直线与曲线交于两点,若,求直线的方程;
(Ⅲ)设为曲线在第一象限内的一点,曲线处的切线与轴分别交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,动圆与定圆B:x2+y2-4y-32=0内切且过定圆内的一个定点A(0,-2),求动圆圆心P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1)、B(x2,y2)两点,则y12+y22的最小值是_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与椭圆的左焦点重合,则p的值为
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆与双曲线有相同的焦点,则椭圆的离心率为
A.B.C.D.

查看答案和解析>>

同步练习册答案