精英家教网 > 高中数学 > 题目详情
17.已知tanα=-$\frac{1}{2}$,求$\frac{1+2sin(π-α)cos(-2π-α)}{si{n}^{2}α-si{n}^{2}(\frac{5π}{2}-α)}$+$\frac{1}{3}$的值.

分析 由已知利用诱导公式,同角三角函数基本关系式,平方差公式化简已知,结合tanα=-$\frac{1}{2}$即可计算得解.

解答 解:原式=$\frac{1+2sinαcosα}{sin2α-cos2α}$+$\frac{1}{3}$
=$\frac{si{n}^{2}α+co{s}^{2}α+2sinαcosα}{si{n}^{2}α-co{s}^{2}α}$+$\frac{1}{3}$…(3分)
=$\frac{(sinα+cosα)^{2}}{(sinα-cosα)(sinα+cosα)}$+$\frac{1}{3}$
=$\frac{sinα+cosα}{sinα-cosα}$+$\frac{1}{3}$…(5分)
=$\frac{tanα+1}{tanα-1}$+$\frac{1}{3}$,…(7分)
又∵tanα=-$\frac{1}{2}$,
∴原式=0.…(8分)

点评 本题主要考查了诱导公式,同角三角函数基本关系式,平方差公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.i是虚数单位,若复数z满足zi=-1+i,则复数z的共轭复数是(  )
A.1-iB.1+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设$\overrightarrow{a}$=2(sinx,1-$\sqrt{2}$cosx),$\overrightarrow{b}$=(cosx,1+$\sqrt{2}$cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$(x∈R).
(1)求函数f(x)的解析式;
(2)求函数f(x)的最小正周期,当x∈[-$\frac{3}{8}$π,$\frac{3}{8}$π]时,求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若不等式$\frac{ax-1}{x+1}$<1的解集是(-1,1),则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.要得到函数y=sin ($\frac{π}{4}$-$\frac{x}{2}$)的图象,只需将y=cos $\frac{x}{2}$的图象(  )
A.向左平移$\frac{π}{2}$个单位B.向右平移$\frac{π}{2}$个单位
C.向左平移$\frac{π}{4}$个单位D.向右平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,已知直线l1,l2,l3的斜率分别为k1,k2,k3,则(  )
A.k1<k2<k3B.k3<k2<k1C.k1<k3<k2D.k2<k1<k3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.计算log25•log32•log53的值为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=4,那么$\overrightarrow{a}$•(2$\overrightarrow{a}$-$\overrightarrow{b}$)的值为24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a=log23.1,b=logπ2,c=log0.52,则(  )
A.b>a>cB.a>b>cC.a>c>bD.c>b>a

查看答案和解析>>

同步练习册答案