在直角坐标系xOy中,点M(2,-
),点F在抛物线C:y=mx2(m>0)的焦点,线段MF恰被抛物线C平分.
(1)求m的值;
(2)过点M作直线l交抛物线C于A、B两点,设直线FA、FM、FB的斜率分别为k1、k2、k3,问k1、k2、k3能否成公差不为零的等差数列?若能,求直线l的方程;若不能,请说明理由.
科目:高中数学 来源: 题型:
设函数
满足:①对任意实数
都有
;②对任意
,有
;③
不恒为0,且当
时,
。
(1)求
,
的值;
(2)判断
的奇偶性,并给出你的证明;
(3)定义:“若存在非零常数T,使得对函数
定义域中的任意一个
,均有
,则称
为以T为周期的周期函数”。试证明:函数
为周期函数,并求出
的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
设F1,F2分别是双曲线
-
=1(a>0,b>0)的左、右焦点,若双曲线的右支上存在一点P,使
=0,且△F1PF2的三边长构成等差数列,则此双曲线的离心率为( )
A.
B.
C.2 D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
已知直线l1:4x-3y+6=0和直线l2:x=-1,P是抛物线y2=4x上一动点,则点P到直线l1和直线l2的距离之和的最小值是( )
A.2 B.3
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
设曲线x2-y2=0与抛物线y2=-4x的准线围成的三角形区域(包含边界)为D,P(x,y)为D内的一个动点,则目标函数z=x-2y+5的最大值为( )
A.4 B.5
C.8 D.12
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC=16,PA=PC=10.
(1)设G是OC的中点,证明:FG∥平面BOE;
(2)证明在△ABO内存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com