已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为________.
科目:高中数学 来源: 题型:
已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A、B两点,且AB的中点为N(-12,-15),则E的方程为( )
A.
-
=1 B.
-
=1
C.
-
=1 D.
-
=1
查看答案和解析>>
科目:高中数学 来源: 题型:
在直角坐标系xOy中,点M(2,-
),点F在抛物线C:y=mx2(m>0)的焦点,线段MF恰被抛物线C平分.
(1)求m的值;
(2)过点M作直线l交抛物线C于A、B两点,设直线FA、FM、FB的斜率分别为k1、k2、k3,问k1、k2、k3能否成公差不为零的等差数列?若能,求直线l的方程;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
设抛物线x2=12y的焦点为F,经过点P(2,1)的直线l与抛物线相交于A,B两点,又知点P恰为AB的中点,则|AF|+|BF|=________.
查看答案和解析>>
科目:高中数学 来源: 题型:
设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点,线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为( )
A.
-
=1 B.
+
=1
C.
-
=1 D.
+
=1
查看答案和解析>>
科目:高中数学 来源: 题型:
已知点F(1,0),⊙F与直线4x+3y+1=0相切,动圆M与⊙F及y轴都相切.
(1)求点M的轨迹C的方程;
(2)过点F任作直线l,交曲线C于A,B两点,由点A,B分别向⊙F各引一条切线,切点分别为P,Q,记α=∠PAF,β=∠QBF,求证sinα+sinβ是定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com