精英家教网 > 高中数学 > 题目详情
16.设M={a,b,c},N={-2,0,2},从M到N的映射满足f(a)>f(b)≥f(c),这样的映射f的个数为(  )
A.1B.2C.4D.5

分析 由题意及映射概念逐一写出满足条件的映射得答案.

解答 解:M={a,b,c},N={-2,0,2},
∵f(a)>f(b)≥f(c),
∴a对应2时,b对应0,c对应0或-2,有2个映射;
a对应2时,b对应-2,c对应-2,有1个映射;
a对应0时,b对应-2,c对应-2,有1个映射.
综上,满足条件的映射个数为4个.
故选C.

点评 本题考查映射的概念,关键是对题意及映射概念的理解,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知正项数列{an}的前n项和为Sn,数列{an}满足,2Sn=an(an+1).
(1)求数列{an}的通项公式;
(2)设数列{$\frac{1}{{{{({a_n}+2)}^2}}}$}的前n项和为An,求证:对任意正整数n,都有An<$\frac{1}{2}$成立;
(3)数列{bn}满足bn=($\frac{1}{2}$)nan,它的前n项和为Tn,若存在正整数n,使得不等式(-2)n-1λ<Tn+$\frac{n}{2^n}$-2n-1成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$tan(θ+\frac{π}{4})=\frac{1}{7}$且-$\frac{π}{2}$<θ<0,则sinθ=(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$-\frac{3}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设min{p,q,r}为表示p,q,r三者中较小的一个,若函数f(x)=min{x+1,-2x+7,x2-x+1},且函数f(x)的图象与直线y=m有四个交点,则m的取值范围是(  )
A.[$\frac{3}{4}$,1]B.[$\frac{3}{4}$,1)C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为(  ) 
A.$\frac{8}{3}$B.$\frac{4}{3}$C.4$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(λ+1,1),$\overrightarrow{b}$=(λ+2,2),若($\overrightarrow{a}$-$\overrightarrow{b}$)⊥($\overrightarrow{a}$+$\overrightarrow{b}$),则实数λ=(  )
A.-4B.-3C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知{an}是等比数列,a2=2,a5=$\frac{1}{4}$,则a1a2+a2a3+…+anan+1=(  )
A.16(1-4-nB.16(1-2-nC.$\frac{32}{3}(1-{4^{-n}})$D.$\frac{32}{3}(1-{2^{-n}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合M={x|x2>4},N={-3,-2,2,3,4},则M∩N=(  )
A.{3,4}B.{-3,3,4}C.{-2,3,4}D.{-3,-2,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.过点A(1,0)的直线l的倾斜角为$α(0<α<\frac{π}{2})$,直线l绕点A逆时针旋转$\frac{π}{3}$角度得到直线y=1-x.
(1)求角α及$cos(\frac{π}{6}-α)$的值;
(2)圆心角为α的扇形周长c为4.求当扇形的面积取最大值时,扇形的半径r及弧长l.

查看答案和解析>>

同步练习册答案