【题目】在某中学举行的物理知识竞赛中,将三个年级参赛学生的成绩在进行整理后分成5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15. ![]()
(1)求成绩在50~70分的频率是多少;
(2)求这三个年级参赛学生的总人数是多少;
(3)求成绩在80~100分的学生人数是多少.
【答案】
(1)解:成绩在50﹣70分的频率为:0.03×10+0.04×10=0.7
(2)解:第三小组的频率为:0.015×10=0.15
这三个年级参赛学生的总人数(总数=
)为:
=100(人)
(3)解:成绩在80﹣100分的频率为:0.01×10+0.005×10=0.15
则成绩在80﹣100分的人数为:100×0.15=15(人)
【解析】(1)根据频率分布直方图的矩形面积表示频率,求出成绩在50﹣70分的矩形面积,即为所求;(2)求出第三组的频率,然后根据三个年级参赛学生的总人数=
,可求出所求;(3)先求出成绩在80﹣100分的频率,然后利用频数=总数×频率可求出成绩在80﹣100分的学生人数.
科目:高中数学 来源: 题型:
【题目】某石化集团获得了某地深海油田区块的开发权,集团在该地区随机初步勘探了部分几口井,取得了地质资料,进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:
![]()
(参考公式和计算结果:
,
,
,
)
(1)1~6号井位置线性分布,借助前5组数据(坐标
)求得回归直线方程为
,求
的值,并估计
的预报值;
(2)现准备勘探新井
,若通过1,3,5,7号并计算出的(
,
精确到0.01),设
,
,当
均不超过10%时,使用位置最接近的已有旧井
,否则在新位置打开,请判断可否使用旧井?
(3)设出油量与勘探深度的比值
不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=asinxcosx﹣
acos2x+
a+b(a>0)
(1)写出函数的单调递减区间;
(2)设x∈[0,
],f(x)的最小值是﹣2,最大值是
,求实数a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(π﹣B)
(1)求角B的大小;
(2)若b=4,△ABC的面积为
,求a+c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校学生总数为8000人,其中一年级1600人,二年级3200人,三年级2000人,四年级1200人.为了完成一项调查,决定采用分层抽样的方法,从中抽取容量为400的样本.
(1)各个年级分别抽取了多少人?
(2)若高校教职工有505人,需要抽取50个样本,你会采用哪种抽样方法,请写出具体抽样过程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知梯形CEPD如图(1)所示,其中PD=8,CE=6,A为线段PD的中点,四边形ABCD为正方形,现沿AB进行折叠,使得平面PABE⊥平面ABCD,得到如图(2)所示的几何体.已知当点F满足
=
(0<λ<1)时,平面DEF⊥平面PCE,则λ的值为( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a2=
,且an+1=3an﹣1(n∈N*).
(1)求数列{an}的通项公式以及数列{an}的前n项和Sn的表达式;
(2)若不等式
≤m对n∈N*恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*(Ⅰ)证明:数列{an﹣n}是等比数列
(Ⅱ)记数列{an}的前n项和为Sn , 求证:Sn+1≤4Sn , 对任意n∈N*成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的
是较小的两份之和,问最小一份为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com