【题目】在数列
中,
,且
(
).
(1)写出此数列的前5项; (2)归纳猜想
的通项公式,并加以证明.
【答案】(1)见解析;(2)见解析.
【解析】试题分析:(1)利用数列{an}前n项的算术平均数等于第n项的2n-1倍,推出关系式,通过n=2,3,4,5求出此数列的前5项;
(2)通过(1)归纳出数列{an}的通项公式,然后用数学归纳法证明.第一步验证n=1成立;第二步,假设n=k猜想成立,然后证明n=k+1时猜想也成立.
试题解析:
(1)由已知分别取
,得
,
,
,
,
所以数列的前5项是:
,
.
(2)由(1)中的分析可以猜想
.
下面用数学归纳法证明:①当
时,公式显然成立.
②假设当
时成立,即
,那么由已知,
得
,即
,
所以
, 即
,
又由归纳假设,得
,
所以
,即当
时,公式也成立.
由①和②知,对一切
,都有
成立.
科目:高中数学 来源: 题型:
【题目】随着网络的飞速发展,人们的生活发生了很大变化,其中无现金支付是一个显著特征,某评估机构对无现金支付的人群进行网络问卷调查,并从参与调查的数万名受访者中随机选取了300人,把这300人分为三类,即使用支付宝用户、使用微信用户、使用银行卡用户,各类用户的人数如图所示,同时把这300人按年龄分为青年人组与中年人组,制成如图所示的列联表:
支付宝用户 | 非支付宝用户 | 合计 | |
中老年 | 90 | ||
青年 | 120 | ||
合计 | 300 |
![]()
(1) 完成列联表,并判断是否有99%的把握认为使用支付宝用户与年龄有关系?
(2)把频率作为概率,从所有无现金支付用户中(人数很多)随机抽取3人,用
表示所选3人中使用支付宝用户的人数,求
的分布列与数学期望.
附:
| 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加
元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费
元,未租出的车每辆每月需要维护费
元.
(1)当每辆车的月租金定为
元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场准备在今年的“五一假”期间对顾客举行抽奖活动,举办方设置了
两种抽奖方案,方案
的中奖率为
,中奖可以获得
分;方案
的中奖率为
,中奖可以获得
分;未中奖则不得分,每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,并凭分数兑换奖品,
(1)若顾客甲选择方案
抽奖,顾客乙选择方案
抽奖,记他们的累计得分为
,若
的概率为
,求![]()
(2)若顾客甲、顾客乙两人都选择方案
或都选择方案
进行抽奖,问:他们选择何种方案抽奖,累计得分的均值较大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】世界那么大,我想去看看,处在具有时尚文化代表的大学生们旅游动机强烈,旅游可支配收入日益增多,可见大学生旅游是一个巨大的市场.为了解大学生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某大学的
名学生进行问卷调查,并把所得数据列成如下所示的频数分布表:
组别 |
|
|
|
|
|
频数 |
|
|
|
|
|
(Ⅰ)求所得样本的中位数(精确到百元);
(Ⅱ)根据样本数据,可近似地认为学生的旅游费用支出
服从正态分布
,若该所大学共有学生
人,试估计有多少位同学旅游费用支出在
元以上;
(Ⅲ)已知样本数据中旅游费用支出在
范围内的
名学生中有
名女生,
名男生,现想选其中
名学生回访,记选出的男生人数为
,求
的分布列与数学期望.
附:若
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的离心率是
,过点
的动直线
与椭圆相交于
两点,当直线
与
轴平行时,直线
被椭圆
截得的线段长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在
轴上是否存在异于点
的定点
,使得直线
变化时,总有
?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com