精英家教网 > 高中数学 > 题目详情
19.执行如图所示的程序框图,输出的x的值为(  )
A.4B.3C.2D.1

分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量x的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:模拟程序的运行,可得
x=0,y=5
不满足条件$\frac{x+y}{2}$=$\sqrt{xy}$,执行循环体,x=1,y=4
不满足条件$\frac{x+y}{2}$=$\sqrt{xy}$,执行循环体,x=2,y=2
满足条件$\frac{x+y}{2}$=$\sqrt{xy}$,退出循环,输出x的值为2.
故选:C.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=4x,直线x=ny+4与抛物线C交于A,B两点.
(Ⅰ)求证:$\overrightarrow{OA}$•$\overrightarrow{OB}$=0(其中O为坐标原点);
(Ⅱ)设F为抛物线C的焦点,直线l1为抛物线C的准线,直线l2是抛物线C的通径所在的直线,过C上一点P(x0,y0)(y0≠0)作直线l:y0y=2(x+x0)与直线l2相交于点M,与直线l1相交于点N,证明:点P在抛物线C上移动时,$\frac{|MF|}{|NF|}$恒为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线C1:y2=8ax(a>0),直线l倾斜角是45°且过抛物线C1的焦点,直线l被抛物线C1截得的线段长是16,双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点在抛物线C1的准线上,则直线l与y轴的交点P到双曲线C2的一条渐近线的距离是(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在集合{x|0≤x≤a,a>0}中随机取一个实数m,若|m|<2的概率为$\frac{1}{3}$,则实数a的值为(  )
A.5B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设命题p:函数f(x)=lg(ax2-2x+1)的定义域为R;命题q:当$x∈[\frac{1}{2},\;2]$时,$x+\frac{1}{x}>a$恒成立,如果命题“p∧q”为真命题,则实数a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在区间[0,8]上随机取一个x的值,执行如图的程序框图,则输出的y≥3的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a,b∈R,若a>b,则(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.2a>2bC.lga>lgbD.sina>sinb

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若2x+y+k≥0恒成立,则直线2x+y+k=0被圆(x-1)2+(y-2)2=25截得的弦长的最大值为(  )
A.10B.2$\sqrt{5}$C.4$\sqrt{5}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2+bx+xlnx在(1,f(1)))处的切线方程为3x-y-2=0
(Ⅰ)求实数a、b的值
(Ⅱ)设g(x)=x2-x,若k∈Z,且k(x-2)<f(x)-g(x)对任意的x>2恒成立,求k的最大值.

查看答案和解析>>

同步练习册答案