精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=cos(2x+$\frac{π}{3}$)+sin2x.
(1)求函数f(x)的最小周期;
(2)求函数f(x)的最大值,并求此时x的集合.

分析 先将函数f(x)=cos(2x+$\frac{π}{3}$)+sin2x.化成“一角一函”形式,再求得最小正周期和最值.

解答 解:f(x)=$\frac{1}{2}cos2x-\frac{\sqrt{3}}{2}sin2x+\frac{1-cos2x}{2}$
=$\frac{1}{2}-\frac{\sqrt{3}}{2}sin2x$
(1)所以函数f(x)的最小周期T=$\frac{2π}{2}=π$
(2)当sin2x=-1时,f(x)取得最大值,此时x=2kπ$-\frac{π}{2}$,k∈Z
所以f(x)的最大值为$\frac{1+\sqrt{3}}{2}$,x的取值集合为{x|x=2kπ$-\frac{π}{2}$,k∈Z}.

点评 本题主要考查三角函数的化简,考查了和差公式和降幂公式的应用,属于基础题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,已知⊙M:(x-4)2+y2=1和抛物线C:y2=2px(p>0,其焦点为F),且$\overrightarrow{FM}$=($\frac{15}{4}$,0,),过抛物线C上一点H(x0,y0)(y0≥1)作两条直线分别与⊙M相切于A、B两点.
(1)求抛物线C的方程;
(2)求直线AB在y轴上的截距的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{x}+m\sqrt{x}$(m∈R),若f(x)在x=4处的切线与直线16x+7y=0垂直.
(Ⅰ)求m的值;
(Ⅱ)令g(x)=kxex,对?x1∈(0,+∞),?x2∈(0,1),总有f(x1)≥g(x2),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}满足$\frac{{a}_{n+1}+{a}_{n}-1}{{a}_{n+1}-{a}_{n}+1}$=n(n∈N*),且a4=28,则首项a1=1,通项公式an=(2n-1)n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,PA=AB=1,PA⊥底面ABCD,底面ABCD为正方形,且M,N分别为PA与BC的中点
(1)求证:CD⊥平面PAD
(2)求证:MN∥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等比数列{an}中,a1=5,q=1,则S6=(  )
A.5B.0C.不存在D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1的侧面ABB1A1为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.
(Ⅰ)求证:平面ABB1A1⊥BB1C1C;
(Ⅱ)若AB=2,求三棱柱ABC-A1B1C1体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若实数x,y满足不等式组$\left\{\begin{array}{l}y≤5\\ 2x-y+3≤0\\ x+y-1≥0\end{array}\right.$,则z=x+2y的最大值是(  )
A.10B.11C.13D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若在平面直角坐标系中,已知动点M和两个定点F1(-$\sqrt{2}$,0),F2($\sqrt{2}$,0),且|MF1|+|MF2|=4
(1)求动点M轨迹C的方程;
(2)设O为坐标原点,若点E在轨迹C上,点F在直线y=-2上,且OE⊥OF,试判断直线EF与圆x2+y2=2的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案