分析 (Ⅰ)运用椭圆的离心率公式和a,b,c的关系,计算即可得到b,进而得到椭圆C的方程;
(Ⅱ)将直线l的方程y=kx+m代入椭圆C的方程3x2+4y2=12中,得到关于x的一元二次方程,由直线l与椭圆C仅有一个公共点知,△=0,即可得到m,k的关系式,利用点到直线的距离公式即可得到d1=|F1M|,d2=|F2N|.当k≠0时,设直线l的倾斜角为θ,则|d1-d2|=|MN|×|tanθ|,即可得到四边形F1MNF2面积S的表达式,利用基本不等式的性质即可得出S的最大值
解答
解:(Ⅰ)由题意可知,|PF1|+|PF2=|2a=4,可得a=2,
又$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,a2-c2=b2,
可得b=1,即有椭圆C1的方程为$\frac{{x}^{2}}{4}$+y2=1;
(Ⅱ)椭圆C2:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
将直线l的方程y=kx+m代入椭圆C的方程3x2+4y2=12中,得(4k2+3)x2+8kmx+4m2-12=0.
由直线l与椭圆C仅有一个公共点知,△=64k2m2-4(4k2+3)(4m2-12)=0,
化简得:m2=4k2+3.
设d1=|F1M|=$\frac{|-k+m|}{\sqrt{{k}^{2}+1}}$,d2=|F2M|=$\frac{|k+m|}{\sqrt{{k}^{2}+1}}$
当k≠0时,设直线l的倾斜角为θ,
则|d1-d2|=|MN|×|tanθ|,
∴S=$\frac{1}{2}$•$\frac{1}{k}$•|d1-d2|•(d1+d2)=$\frac{2|m|}{{k}^{2}+1}$=$\frac{8}{|m|+\frac{1}{|m|}}$,
∵m2=4k2+3,∴当k≠0时,|m|>$\sqrt{3}$,
∴|m|+$\frac{1}{|m|}$$>\frac{4\sqrt{3}}{3}$,
∴S<2$\sqrt{3}$.
当k=0时,四边形F1MNF2是矩形,S=2$\sqrt{3}$.
所以四边形F1MNF2面积S的最大值为2$\sqrt{3}$.
点评 本题主要考查椭圆的方程与性质、直线方程、直线与椭圆的位置关系、等差数列、二次函数的单调性、基本不等式的性质等基础知识,考查运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sin(x+$\frac{π}{3}$) | B. | sin(x+$\frac{π}{6}$) | C. | 2sin(x+$\frac{π}{3}$) | D. | 2sin(x+$\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 25,0.56 | B. | 20,0.56 | C. | 25,0.50 | D. | 13,0.29 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com