精英家教网 > 高中数学 > 题目详情
11.在△ABC中,角A,B,C的对边分别为a,b,c,且a=2,b=3,c=4,则△ABC中最大角的余弦值是$-\frac{1}{4}$.

分析 由已知,利用大边对大角可求C为最大角,结合余弦定理算出cosC的值,即可得到最大角的余弦值.

解答 解:在△ABC中,∵a=2,b=3,c=4,
∴C为最大角,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{{2}^{2}+{3}^{2}-{4}^{2}}{2×2×3}$=$-\frac{1}{4}$.
故答案为:$-\frac{1}{4}$.

点评 本题给出三角形三个边,求最大角的余弦.着重考查了大边对大角,利用余弦定理解三角形的知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列四个函数在(-∞,0)是增函数的为(  )
A.f(x)=x2+4B.f(x)=1-2xC.f(x)=-x2-x+1D.f(x)=2-$\frac{3}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知命题p:?x∈R,x2+ax+1≥0,写出¬p:?x∈R,x2+ax+1<0;若命题p是假命题,则实数a的取值范围是a<-2或a>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合M={x|$\frac{x-3}{x+5}$<0},N={y|y2+6y-7≥0},则M∩N=(  )
A.(-5,1]B.[1,3)C.D.(-5,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.平面直角坐标系xOy中,已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,左、右焦点分别是P和Q,以P为圆心,以3为半径的圆与以Q为圆心,以1为半径的圆相交,交点在椭圆C1上.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}+2}$=1的左、右焦点分别为F1和F2,若动直线l:y=kx+m(k,m∈R)与椭圆C2有且仅有一个公共点,且F1M⊥l于M,F2N⊥l于N,设S为四边形F1MNF2的面积,请求出S的最大值,并说明此时直线l的位置;若S无最大值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知y=f(x)是奇函数,若g(x)=f(x)+2,且g(lg2)=3,则g(lg$\frac{1}{2}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x2-2x)lnx+ax2+2.
(1)当a=-1时,求函数f(x)在点(1,f(1))处的切线方程;
(2)设函数g(x)=f(x)-x-2,
①当函数g(x)有且只有一个零点时,求a的值;
②在①的条件下,当e-1<x<e时,g(x)≥m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知log${\;}_{\frac{1}{2}}}$a>log${\;}_{\frac{1}{2}}}$b,则下列不等式成立的是(  )
A.ln(a-b)>0B.$\frac{1}{a}<\frac{1}{b}$C.3a-b<1D.loga2<logb2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等差数列{an}的前n项和为Sn,若a2+a4+a15的值为常数,则下列为常数的是(  )
A.S7B.S8C.S13D.S15

查看答案和解析>>

同步练习册答案