精英家教网 > 高中数学 > 题目详情
16.某班学生在一次数学考试中各分数段以及人数的成绩分布为:[0,80),2人;[80,90),6人;[90,100),4人;[100,110),8人;[110,120),12人;[120,130),5人;[130,140),6人;[140,150),2人.那么分数在[100,130)中的频数以及频率分别为(  )
A.25,0.56B.20,0.56C.25,0.50D.13,0.29

分析 频数与总数的比为频率,由此能求出结果.

解答 解:分数在[100,130)的频数为:8+12+5=25,
样本容量为2+6+4+8+12+5+6+2=45,
所求的频率值为:$\frac{25}{45}$≈0.56.
故选:A.

点评 本题考查了频率的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.平面直角坐标系xOy中,已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,左、右焦点分别是P和Q,以P为圆心,以3为半径的圆与以Q为圆心,以1为半径的圆相交,交点在椭圆C1上.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}+2}$=1的左、右焦点分别为F1和F2,若动直线l:y=kx+m(k,m∈R)与椭圆C2有且仅有一个公共点,且F1M⊥l于M,F2N⊥l于N,设S为四边形F1MNF2的面积,请求出S的最大值,并说明此时直线l的位置;若S无最大值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若f(x)=-x2+3,则函数f(x)的增区间是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,过点P(2,-1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.
(1)求曲线C的直角坐标方程;  
 (2)求|PA|•|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,既是奇函数又在(0,+∞)单调递增的是(  )
A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等差数列{an}的前n项和为Sn,若a2+a4+a15的值为常数,则下列为常数的是(  )
A.S7B.S8C.S13D.S15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R).
(Ⅰ)当a=0时,求f(x)的单调区间;
(Ⅱ)若函数f(x)在其定义域内有两个不同的极值点.
(ⅰ)求a的取值范围;
(ⅱ)设两个极值点分别为x1,x2,证明:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在正四棱锥V-ABCD中(底面是正方形,侧棱均相等),AB=2,VA=$\sqrt{6}$,且该四棱锥可绕着AB任意旋转,旋转过程中CD∥平面α,则正四棱锥V-ABCD在平面α内的正投影的面积的取值范围是(  )
A.[2,4]B.(2,4]C.[$\sqrt{6}$,4]D.[2,2$\sqrt{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|1<2x-1<7},集合B={x|x2-2x-3<0}.
(1)求A∩B;
(2)求∁R(A∪B).

查看答案和解析>>

同步练习册答案