精英家教网 > 高中数学 > 题目详情
19.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第10个数.

分析 本题是一个分类计数问题,首位是1,第二位是0,则后三位可以用剩下的数字全排列,共有A33个,前两位是12,第三位是0,后两位可以用余下的两个数字进行全排列.共有A22结果,前三位是123.第四位是0,最后一位是4,只有1种结果,前边有9个,数字本身是第十个.

解答 解:由题意知本题是一个分类计数问题,
首位是1,第二位是0,则后三位可以用剩下的数字全排列,共有A33=6个,
前两位是12,第三位是0,后两位可以用余下的两个数字进行全排列.共有A22=2种结果,
前三位是123.第四位是0,最后一位是4,只有1种结果,
∴数字12340前面有6+2+1=9个数字,
数字本身就是第十个数字,
故答案为:10.

点评 本题考查计数原理的应用,本题解题的关键是看出数字比12340小的只能是第二,三,四为上为0的情况,注意做到不重不漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=x3+ax2+bx(x>0)的图象与x轴相切于M(3,0).
(1)求f(x)的解析式;
(2)是否存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.△ABC内一点O,OA=OB=2,OC=3$\sqrt{2}$,△ABC的面积最大值为$\frac{7\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知长方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(Ⅰ)求证:AD⊥BM;
(Ⅱ)若点E是线段DB上的一动点,问点E在何位置时,三棱锥M-ADE的体积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在4月份的30天都记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,从中随机挑选了5天进行分析研究,得到如表格:
日期4月1日4月7日4月15日4月21日4月30日
温差x/℃101113128
发芽数y/颗2325302616
(1)请根据4月7日、15日和21日的三天数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若某天种子发芽率不低于$\frac{1}{4}$,则称该天种子发芽情况为“长势喜人”.根据表中5天的数据,以频率为概率,估计4月份的整体种子发芽情况.若在4月份中随机挑选3天,记“长势喜人”的天数为X,求X的分布列及数学期望.(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知曲线C:y=lnx在x=e处的切线为l.
(1)求直线l的方程;
(2)求直线l与曲线C以及x轴所围成的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某公司为了了解用电量y(单位:度)与气温x(单位:℃)之间的关系,随机统计了某4天的用电量与当天气温,数据如表:
气温(℃)141286
用电量22263438
(1)由散点图知,用电量y与气温x具有线性相关关系,求y关于x的线性回归方程;
(2)根据(1)所求的线性回归方程估计气温为10℃时的用电量.
参考公式:b=$\frac{{\sum_{i=1}^n{x_i}{y_i}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,a=$\overline{y}$-b$\overline{x}$;$\sum_{i=1}^{4}$xiyi=1120,$\sum_{i=1}^{4}$xi2=440.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.掷一个六面体的骰子,点数6,5向上的概率等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=lnx+x2-2mx+m2,m∈R.
(Ⅰ) 当m=0时,求函数f(x)在[1,3]上的最小值;
(Ⅱ) 若函数f(x)在[$\frac{2}{3}$,$\frac{3}{2}$]上存在单调递增区间,求实数m的取值范围;
(Ⅲ) 若函数f(x)存在极值点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案