精英家教网 > 高中数学 > 题目详情
10.已知$\frac{tanθ}{tanα}$=$\frac{2+co{s}^{2}θ}{2+si{n}^{2}θ}$,求$\frac{cos2θ•sin(θ+α)}{sin(θ-α)}$的值.

分析 用θ的三角函数表示出tanα,代入要求的式子整理即可得出答案.

解答 解:∵$\frac{tanθ}{tanα}$=$\frac{2+co{s}^{2}θ}{2+si{n}^{2}θ}$,∴tanα=$\frac{tanθ(2+si{n}^{2}θ)}{2+co{s}^{2}θ}$,
∴$\frac{cos2θ•sin(θ+α)}{sin(θ-α)}$=$\frac{cos2θ•(sinθcosα+cosθsinα)}{sinθcosα-cosθsinα}$=$\frac{cos2θ(tanθ+tanα)}{tanθ-tanα}$
=$\frac{cos2θ•(tanθ+\frac{2+si{n}^{2}θ}{2+co{s}^{2}θ}•tanθ)}{tanθ-\frac{2+si{n}^{2}θ}{2+co{s}^{2}θ}•tanθ}$=$\frac{5cos2θ}{cos2θ}=5$.

点评 本题考查了三角函数的恒等变换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.有下列三个结论:
①命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”;
②“a=1”是“直线x-ay+1=0与直线x+ay-2=0互相垂直”的充要条件;
③若随机变量ξ服从正态分布N(1,σ2),且P(ξ<2)=0.8,则P(0<ξ<1)=0.2;
其中正确结论的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$+$\overrightarrow{b}$=(1,-3),$\overrightarrow{a}$-$\overrightarrow{b}$=(3,7),$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.-12B.-20C.12D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2-ax-4(a∈R).
(I)若f(x)在[0,2]上单调,求a的取值范围;
(Ⅱ)若f(x)在区间[a,a+1]上的最小值为-8,求a的值;
(Ⅲ)若对任意的a∈R,总存在x0∈[1,2],使得|f(x0)|≥m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等差数列{an}中,a1+a9=10,a2=-1,则数列{an}的公差为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知焦点在y轴上的椭圆E的中心是原点O,离心率等于$\frac{\sqrt{3}}{2}$,以椭圆E的长轴和短轴为对角线的四边形的周长为4$\sqrt{5}$,直线l:y=kx+m与y轴交于点P,与椭圆E交于A、B两个相异点,且$\overrightarrow{AP}$=λ$\overrightarrow{PB}$.
(I)求椭圆E的方程;
(Ⅱ)是否存在m,使$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆的中心在坐标原点,焦点F1、F2在x轴上,M是长轴的一个端点,并且|F1M|:|F1F2|=|F1F2|:|F2M|,直线l:y=x截椭圆所得的弦长是2.求该椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$\overrightarrow{a}$=(x,-1,0),$\overrightarrow{b}$=(3,x2,9)的夹角为钝角,则实数x的取值范围为(-∞,0)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a,b是实数,b>0,函数f(x)=1+asinbx的图象如图所示,则符合条件的函数y=loga(x+b)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案