精英家教网 > 高中数学 > 题目详情
19.设$a=\int_0^π{sinxdx}$,则${(a\sqrt{x}+\frac{1}{x})^6}$展开式的常数项为(  )
A.-20B.20C.-160D.240

分析 利用定积分求出a的值,再利用二项式展开式的通项公式求出展开式的常数项.

解答 解:$a=\int_0^π{sinxdx}$=-cosx${|}_{0}^{π}$=-(cosπ-cos0)=2,
则${(a\sqrt{x}+\frac{1}{x})^6}$=${(2\sqrt{x}+\frac{1}{x})}^{6}$展开式的通项公式为:
Tr+1=${C}_{6}^{r}$•${(2\sqrt{x})}^{6-r}$•${(\frac{1}{x})}^{r}$
=26-r•${x}^{3-\frac{3}{2}r}$•${C}_{6}^{r}$,
令3-$\frac{3}{2}$r=0得:r=2.
∴展开式中的常数项为24•${C}_{6}^{2}$=240.
故选:D.

点评 本题考查了定积分与二项式展开式的通项公式应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.△ABC中,角A,B,C所对的边分别是a,b,c,若角A,B,C依次成等差数列,且$a=1,c=\sqrt{3}$,则S△ABC等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线ax-y+3=0与圆(x-2)2+(y-a)2=4相交于M,N两点,若|MN|≥2$\sqrt{3}$,则实数a的取值范围是a≤-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<φ<π)是奇函数,直线y=$\sqrt{2}$与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为$\frac{π}{2}$,则(  )
A.f(x)在$(0,\frac{π}{4})$上单调递减B.f(x)在$(\frac{π}{8},\frac{3π}{8})$上单调递减
C.f(x)在$(0,\frac{π}{4})$上单调递增D.f(x)在$(\frac{π}{8},\frac{3π}{8})$上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若“?x0∈R,x02+2x0+m≤0”是真命题,则实数m的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图是某企业2010年至2016年污水净化量(单位:吨)的折线图.

注:年份代码1~7分别对应年份2010~2016.
(1)由折线图看出,可用线性回归模型拟合y和t的关系,请用相关系数加以说明;
(2)建立y关于t的回归方程,预测2017年该企业污水净化量;
(3)请用数据说明回归方程预报的效果.
附注:参考数据:$\overline{y}$=54,$\sum_{i=1}^{7}$(ti-$\overline{t}$)(yi-$\overline{y}$)=21,$\sqrt{14}$≈3.74,$\sum_{i=1}^{7}$(yi-$\stackrel{∧}{{y}_{i}}$ )2=$\frac{9}{4}$.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}{b}$t中斜率和截距的最小二乘估计公式分别为$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.
反映回归效果的公式为R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,其中R2越接近于1,表示回归的效果越好.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知长方体AC1中,AD=AB=2,AA1=1,E为D1C1的中点,如图所示.
(Ⅰ)在所给图中画出平面C1BD1与平面B1EC的交线(不必说明理由);
(Ⅱ)证明:BD1∥平面B1EC;
(Ⅲ)求BD1中点到平面B1EC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为了解本市居民的生活成本,甲、乙、内三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),甲、乙、丙所调查数据的标准差分别为x1,x2,x3,则它们的大小关系为(  )
A.s1>s2>s3B.s1>s3>s2C.s3>s2>s1D.s3>s1>s2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料.公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.
(1)求X的分布列;
(2)求此员工月工资被定为2100元的概率.

查看答案和解析>>

同步练习册答案