精英家教网 > 高中数学 > 题目详情
17.数列{an}中,已知a1=1,an+1=-$\frac{1}{{a}_{n}+1}$,则a2015=(  )
A.-2B.-$\frac{1}{3}$C.1D.-$\frac{1}{2}$

分析 求出数列前几项的值,判断数列是周期数列,进而可得结论.

解答 解:依题意,a1=1,an+1=-$\frac{1}{{a}_{n}+1}$,a2=-$\frac{1}{1+1}$=-$\frac{1}{2}$,
a3=-$\frac{1}{-\frac{1}{2}+1}$=-2,
a4=-$\frac{1}{-2+1}$=1,
∴该数列是以3为周期的周期数列,
∵2015=671×3+2,
∴a2015=a2=-$\frac{1}{2}$,
故选:D.

点评 本题考查数列的通项,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x+$\frac{1}{\sqrt{x}}$,g(x)=$\frac{(x-2)^{0}-\sqrt{x}}{x}$,求函数F(x)=f(x)+g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.a2=4是a=2的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式|x-1|+|x+3|>a,对一切实数x都成立,则实 数a的取值范围是(-∞,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.集合A={a,b,c,d,e}有5个元素,集合B={m,n,f,h}有4个元素,则
(1)从集合A到集合B可以建立45个不同的映射.
(2)从集合B到集合A可以建立54个不同的映射.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,sin2$\frac{A}{2}$=$\frac{c-b}{2c}$(a,b,c分别为角A,B,C的对应边),则△ABC的形状为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x2+ix+6=5x+2i
(文科)当x∈R时,x的值为2
(理科)当x∉R时,求x的值为3-i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列几个命题,其中正确的有(1)(2)(3)(4)(5)(请把正确命题的所有序号都写上!)
(1)函数$y=\frac{{\sqrt{x+1}}}{x}$的定义域为{x|x≥-1但x≠0};
(2)已知f(x)=ax2+bx是定义在[b-1,2b]上的奇函数,那么$a+b=\frac{1}{3}$;
(3)已知f(x)=ax5+bx3+cx-8,且f(2013)=2016,则f(-2013)=-2032;
(4)函数y=|x2-3x+2|的图象和直线y=m有两个公共点,则m的范围是$\left\{0\right\}∪(\frac{1}{4},+∞)$;
(5)定义在R上的函数f(x)的值域是[-1,2],则函数f(x+2013)的值域仍为[-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题“?x0∈R,使得x2=1”的否定是(  )
A.?x∈R,都有x2=1B.?x0∉R,使得x2=1C.?x∈R,都有x2≠1D.?x0∈R,使得x2≠1

查看答案和解析>>

同步练习册答案