精英家教网 > 高中数学 > 题目详情
7.命题“?x0∈R,使得x2=1”的否定是(  )
A.?x∈R,都有x2=1B.?x0∉R,使得x2=1C.?x∈R,都有x2≠1D.?x0∈R,使得x2≠1

分析 利用特称命题的否定是全称命题写出结果即可..

解答 解:特称命题的否定是全称命题,
所以命题“?x0∈R,使得x2=1”的否定是:?x∈R,都有x2≠1.
故选:C.

点评 本题考查命题的否定,特称命题与全称命题的否定关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.数列{an}中,已知a1=1,an+1=-$\frac{1}{{a}_{n}+1}$,则a2015=(  )
A.-2B.-$\frac{1}{3}$C.1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知平面上三个点坐标为A(3,7),B(4,6),C(1,-2),求点D的坐标,使得这四个点为构成平行四边形的四个顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设正项等差数列{an}的前n项和为Sn,若S2015=2015,则$\frac{1}{a_2}+\frac{1}{{{a_{2014}}}}$的最小值为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{m}$=(sin2x,-1),向量$\overrightarrow{n}$=($\sqrt{3}$cos2x,-$\frac{1}{2}$),函数f(x)=($\overrightarrow{m}$+$\overrightarrow{n}$)•$\overrightarrow{m}$.
(Ⅰ)求f(x)的最小正周期T;
(Ⅱ)已知a、b、c分别为△ABC内角A、B、C的对边,A为锐角,a=$\sqrt{13}$,c=2,且f(A)恰是f(x)在[0,$\frac{π}{4}$]上的最大值,求A和b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,周期为π,且在$(\frac{π}{2},π)$上为减函数的是(  )
A.y=cosxB.y=2|sinx|C.y=cos$\frac{x}{2}$D.y=tanx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在一次射击训练中,甲、乙两名运动员各射击一次.设命题p是“甲运动员命中10环”,q是“乙运动员命中10环”,则命题“至少有一名运动员没有命中10环”可表示为(  )
A.p∨qB.(¬p)∧(¬q)C.(¬p)∨(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=|x2-a2|(a>0),f(m)=f(n),且m<n<0,若点P(m,n)到直线x+y-8=0的最大距离为$6\sqrt{2}$时,则a的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)满足对任意实数x,y,f(x+y)=f(x)+f(y),且f(1)=1.证明:如果对任意x>0,f(x)>0,则符合条件的f(x)是唯一的.

查看答案和解析>>

同步练习册答案