精英家教网 > 高中数学 > 题目详情
是椭圆的两个焦点,过作直线与椭圆交于A,B两点,的周长为              
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的离心率为,点是椭圆上的一点,且点到椭圆的两焦点的距离之和为4,
(1)求椭圆的方程;
(2)过点作直线与椭圆交于两点,是坐标原点,设,是否存在这样的直线,使四边形的对角线长相等?若存在,求出的方程,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆两焦点分别为,是椭圆在第一象限弧上的一点,并满足,过点作倾斜角互补的两条直线分别交椭圆于两点.
(1)求点坐标;
(2)证明:直线的斜率为定值,并求出该定值;
(3)求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的离心率为,焦点到相应准线的距离为
(1)求椭圆C的方程
(2)设直线与椭圆C交于A、B两点,坐标原点到直线的距离为,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的左、右焦点,过的直线与椭圆相交于A,B两点,直线的倾斜角为到直线的距离为.
(1)求椭圆的焦距;
(2)如果,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题14分)如图,直线与椭圆交于两点,记的面积为

(I)求在的条件下,的最大值;
(II)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是椭圆上的任意一点,是椭圆的两个焦点,且∠,则该椭圆的离心率的取值范围是             

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2为椭圆+y2=1的两焦点,P在椭圆上,当△F1PF2面积为1时, 的值为         (   )
A.0B.1C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆,右焦点F(c,0),方程的两个根分别为x1,x2,则点P(x1,x2)在
A.圆B.圆
C.圆D.以上三种情况都有可能

查看答案和解析>>

同步练习册答案