(本小题满分14分)已知函数
,
(
).
(1)若
,求函数
的极值;
(2)设函数
,求函数
的单调区间;
(3)若在
(
)上存在一点
,使得
成立,求
的取值范围.
(1)当
时,函数
取得极小值1;(2)当
时,
的递减区间为
;递增区间为
,当
时,
只有递增区间为
;(3)
.
【解析】
试题分析:本题主要考查导数的运算、利用导数判断函数的单调区间、利用导数求函数的极值和最值等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,当
时,先得到
解析式,在定义域范围内,解不等式
,
得到函数的单调区间,从而得到函数
的极值;第二问,先求出
表达式,对
求导,需讨论
的根
与0的大小,分情况讨论;第三问,将在
(
)上存在一点
,使得
成立转化为
,构造函数
,结合第二问的结论,讨论求
的最小值.
试题解析:(1)
的定义域为
. 1分
当
时,
,
. 2分
由
,解得
.
当
时,
,
单调递减;
当
时,
,
单调递增;
所以当
时,函数
取得极小值,极小值为
; 4分
(2)
,其定义域为
.
又
. 5分
①当
,即
时,在
上
,所以,函数
在
上单调递增. 6分
②当
,即
时,在
上
,在
上
,
所以
在
上单调递减,在
上单调递增; 7分
综上所述:当
时,
的递减区间为
;递增区间为
.
当
时,
只有递增区间为
. 8分
(3)若在
上存在一点
,使得
成立,即在
上存在一点
,使得
.
则函数
在
上的最小值小于零. 9分
①当
,即
时,由(2)可知
在
上单调递减.
故
在
上的最小值为
,由
,可得
.
因为
.所以
; 10分
②当
,即
时,由(2)可知
在
上单调递增.
故
在
上最小值为
,由
,
可得
(满足
); 11分
③当
,即
时,由(2)可知可得
在
上最小值为
.
因为
,所以,
.
![]()
,即
不满足题意,舍去. 13分
综上所述得
,或
.
实数
的取值范围为
. 14分
考点:导数的运算、利用导数判断函数的单调区间、利用导数求函数的极值和最值.
科目:高中数学 来源:2014-2015学年黑龙江省绥化市高三下学期期初开学联考理科数学试卷(解析版) 题型:选择题
已知椭圆
,以O为圆心,短半轴长为半径作圆O,过椭圆的长轴的一端点P作圆O的两条切线,切点为A、B,若四边形PAOB为正方形,则椭圆的离心率为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2014-2015学年广东省潮州市高三上学期期末教学质量检测文科数学试卷(解析版) 题型:选择题
高三
班共有学生
人,现根据座号,用系统抽样的方法,抽取一个容量为
的样本.已知
号、
号、
号同学在样本中,那么样本中还有一个同学的座号是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2014-2015学年广东省潮州市高三上学期期末教学质量检测理科数学试卷(解析版) 题型:解答题
(本小题满分12分)已知函数
,
.
(1)求
的值;
(2)若
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源:2014-2015学年广东省潮州市高三上学期期末教学质量检测理科数学试卷(解析版) 题型:选择题
若函数
(
)满足
,且
时,
,已知函数
,则函数
在区间
内的零点的个数为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2014-2015学年湖南省、湘阴县一中高三12月联考理科数学试卷(解析版) 题型:填空题
如图是从上下底面处在水平状态下的棱长为1m的正方体
中分离出来的.如果用图示中这样一个装置来盛水,那么最多能盛
体积的水.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com