精英家教网 > 高中数学 > 题目详情
8.函数f(x)=2sin(2x+$\frac{π}{3}$),g(x)=mcos(2x-$\frac{π}{6}$)-2m+3(m>0),若对任意x1∈[0,$\frac{π}{4}$],存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立,则实数m的取值范围是(  )
A.$(1,\frac{4}{3})$B.$(\frac{2}{3},1]$C.$[\frac{2}{3},1]$D.$[1,\frac{4}{3}]$

分析 由题意可得,当x∈[0,$\frac{π}{4}$]时,g(x)的值域是f(x)的值域的子集,由此列出不等式组,求得m的范围.

解答 解:当x∈[0,$\frac{π}{4}$]时,2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{5π}{6}$],sin(2x+$\frac{π}{3}$)∈[$\frac{1}{2}$,1],
f(x)=2sin(2x+$\frac{π}{3}$)∈[1,2],
同理可得2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{π}{3}$],cos(2x-$\frac{π}{6}$)∈[$\frac{1}{2}$,1],
g(x)=mcos(2x-$\frac{π}{6}$)-2m+3∈[-$\frac{3m}{2}$+3,-m+3],
对任意x1∈[0,$\frac{π}{4}$],存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立,
∴$\left\{\begin{array}{l}{-\frac{3m}{2}+3≥1}\\{-m+3≤2}\end{array}\right.$,求得1≤m≤$\frac{4}{3}$,
故选:D.

点评 本题考查两角和与差的正弦函数,着重考查三角函数的性质的运用,考查二倍角的余弦,解决问题的关键是理解对任意x1∈[0,$\frac{π}{4}$],总存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立的含义,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.函数f(x)=x|x-a|-2x+a2,若a∈[-2,4],求函数在[-3,3]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+bx+c,且f(1+x)=f(1-x),f(0)=-2.
(1)求f(x)的解析式;
(2)已知a∈R,p:当0<x<1时,不等式f(x)+3<2x+a恒成立;q:当x∈[-2,2]时,g(x)=f(x)-ax是单调函数,若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.四棱锥P-ABCD的底面ABCD是矩形,侧面PAD⊥平面ABCD,∠APD=120°,AB=PA=PD=2,则该四棱锥P-ABCD的外接球的体积为$\frac{20\sqrt{5}}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若规定$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,则$|\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}|$=_-2,不等式1<$|\begin{array}{l}{2x}&{1}\\{1}&{x}\end{array}|$<7的解集为(-2,-1)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+ax+2.
(Ⅰ)求实数a的值,使函数y=f(x)在区间[-5,5]上为偶函数;
(Ⅱ)求实数a的取值范围,使函数y=f(x)在区间[-5,5]上是单调函数;
(Ⅲ)求f(x)在区间[-5,5]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-3x+1
(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)求曲线在点(0,f(0))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在一个暗箱中装有5个手感、材质、大小都相同的球,其中有3个黑球,2个白球.
(1)如果不放回地依次抽取2个球,则在第1次抽到黑球的条件下,第2次抽到黑球的概率.
(2)如果从暗箱中任取2球,求在已知其中一个球为黑球的条件下,另一个球也是黑球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设不等式组$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面区域为D,在区域D内随机取一个点,则此点到点(1,1)的距离大于1的概率是(  )
A.$\frac{4-π}{4}$B.$\frac{π-2}{2}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案