| A. | $(1,\frac{4}{3})$ | B. | $(\frac{2}{3},1]$ | C. | $[\frac{2}{3},1]$ | D. | $[1,\frac{4}{3}]$ |
分析 由题意可得,当x∈[0,$\frac{π}{4}$]时,g(x)的值域是f(x)的值域的子集,由此列出不等式组,求得m的范围.
解答 解:当x∈[0,$\frac{π}{4}$]时,2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{5π}{6}$],sin(2x+$\frac{π}{3}$)∈[$\frac{1}{2}$,1],
f(x)=2sin(2x+$\frac{π}{3}$)∈[1,2],
同理可得2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{π}{3}$],cos(2x-$\frac{π}{6}$)∈[$\frac{1}{2}$,1],
g(x)=mcos(2x-$\frac{π}{6}$)-2m+3∈[-$\frac{3m}{2}$+3,-m+3],
对任意x1∈[0,$\frac{π}{4}$],存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立,
∴$\left\{\begin{array}{l}{-\frac{3m}{2}+3≥1}\\{-m+3≤2}\end{array}\right.$,求得1≤m≤$\frac{4}{3}$,
故选:D.
点评 本题考查两角和与差的正弦函数,着重考查三角函数的性质的运用,考查二倍角的余弦,解决问题的关键是理解对任意x1∈[0,$\frac{π}{4}$],总存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立的含义,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4-π}{4}$ | B. | $\frac{π-2}{2}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com