精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)的定义域为[﹣1,1],图象如图1所示;函数g(x)的定义域为[﹣2,2],图象如图2所示,设函数f(g(x))有m个零点,函数g(f(x))有n个零点,则m+n等于(  )

A. 6 B. 10 C. 8 D. 1

【答案】B

【解析】解:由图象可知,

f(g(x))=0,则g(x)=﹣1g(x)=0g(x)=1;

由图2知,g(x)=﹣1时,x=﹣1x=1;

g(x)=0时,x的值有3个;g(x)=1时,x=2x=﹣2;

g(x)=﹣1时,x=1x=﹣1.

m=7;

g(f(x))=0,则f(x)=﹣1.5f(x)=1.5f(x)=0;

由图1知,f(x)=1.5f(x)=﹣1.5无解;

f(x)=0时,x=﹣1,x=1x=0,故n=3;

m+n=10;

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知坐标平面上点与两个定点 的距离之比等于5.

(1)求点的轨迹方程,并说明轨迹是什么图形;

(2)记(1)中的轨迹为,过点的直线所截得的线段的长为8,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥A-BCDE中,底面BCDE为直角梯形,CD⊥平面ABC,侧面ABC是等腰直角三角形,∠EBC=ABC=90°BC=CD=2BE=2,点M是棱AD的中点

(I)证明:平面AED⊥平面ACD;

()求锐二面角B-CM-A的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得=80, =20, =184, =720.

(1)求家庭的月储蓄y对月收入x的线性回归方程ybxa

(2)判断变量xy之间是正相关还是负相关;

(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

附:线性回归方程ybxa中, ab,其中 为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2017年该市共享单车用户年龄登记分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁至39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有是“年轻人”.

(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?

(2)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量,求的分布与期望.

(参考数据:独立性检验界值表,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—5:不等式选讲

已知函数(x)=|2x-a|+ |x -1|.

(Ⅰ)当a=3时,求不等式(x)≥2的解集;

(Ⅱ)若(x)≥5-x对恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过椭圆的右焦点且与椭圆交于两点, 中点, 的斜率为.

(1)求椭圆的方程;

(2)设是椭圆的动弦,且其斜率为1,问椭圆上是否存在定点,使得直线的斜率满足?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}(nN*),首项a13,前n项和为Sn,且S3a3S5a5S4a4成等差数列.

1)求数列{an}的通项公式;

2)数列{nan}的前n项和为Tn,若对任意正整数n,都有Tn[ab],求ba的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市政府为了节约用水,调查了100位居民某年的月均用水量(单位:),频数分布如下:

分组

频数

4

8

15

22

25

14

6

4

2

(1)根据所给数据将频率分布直图补充完整(不必说明理由);

(2)根据频率分布直方图估计本市居民月均用水量的中位数;

(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).

查看答案和解析>>

同步练习册答案